{"id":394630,"date":"2024-10-20T04:15:01","date_gmt":"2024-10-20T04:15:01","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bs-1377-22022\/"},"modified":"2024-10-26T07:57:13","modified_gmt":"2024-10-26T07:57:13","slug":"bs-1377-22022","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bs-1377-22022\/","title":{"rendered":"BS 1377-2:2022"},"content":{"rendered":"
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
7<\/td>\n | Foreword <\/td>\n<\/tr>\n | ||||||
9<\/td>\n | 1 Scope 2 Normative references <\/td>\n<\/tr>\n | ||||||
10<\/td>\n | 3 Terms and definitions 4 Determination of water content 4.1 Oven-drying method <\/td>\n<\/tr>\n | ||||||
11<\/td>\n | 4.2 Method for saturation water content of chalk 5 Determination of liquid limit <\/td>\n<\/tr>\n | ||||||
12<\/td>\n | 5.1 General 5.2 Cone penetrometer method (definitive method) 5.3 One-point cone penetrometer method <\/td>\n<\/tr>\n | ||||||
13<\/td>\n | Table 1 \u2014 Factors for one-point cone penetrometer liquid limit test 5.4 Casagrande apparatus method <\/td>\n<\/tr>\n | ||||||
14<\/td>\n | 5.5 One-point Casagrande method 6 Determination of plastic limit and plasticity index 6.1 General <\/td>\n<\/tr>\n | ||||||
15<\/td>\n | 6.2 Additional parameters 7 Determination of shrinkage characteristics\u2013Linear shrinkage 7.1 General 7.2 Apparatus <\/td>\n<\/tr>\n | ||||||
16<\/td>\n | Figure 1 \u2014 Mould for linear shrinkage test 7.3 Preparation of apparatus 7.4 Procedure <\/td>\n<\/tr>\n | ||||||
17<\/td>\n | 7.5 Calculations and expression of results 7.6 Test report 8 Determination of density <\/td>\n<\/tr>\n | ||||||
18<\/td>\n | 9 Determination of particle density 9.1 General 9.2 Gas jar method <\/td>\n<\/tr>\n | ||||||
20<\/td>\n | 10 Determination of particle size distribution 11 Determination of dry density\/water content relationship 11.1 General <\/td>\n<\/tr>\n | ||||||
21<\/td>\n | Figure 2 \u2014 Dry density\/water content relationship curve <\/td>\n<\/tr>\n | ||||||
22<\/td>\n | Table 2 \u2014 Summary of compaction procedures 11.2 Preparation of samples for compaction tests <\/td>\n<\/tr>\n | ||||||
23<\/td>\n | Table 3 \u2014 Summary of sample preparation procedures <\/td>\n<\/tr>\n | ||||||
24<\/td>\n | Figure 3 \u2014 Grading limits relating to specimen preparation procedures for compaction tests Figure 4 \u2014 Flow chart representing specimen preparation methods for compaction tests <\/td>\n<\/tr>\n | ||||||
27<\/td>\n | 11.3 Compaction method using 2.5 kg rammer with 1 L mould <\/td>\n<\/tr>\n | ||||||
28<\/td>\n | Figure 5 \u2014 Mould for compaction test (1 L mould) <\/td>\n<\/tr>\n | ||||||
29<\/td>\n | Figure 6 \u2014 2.5 kg rammer for compaction test <\/td>\n<\/tr>\n | ||||||
32<\/td>\n | 11.4 Compaction method using 2.5 kg rammer with CBR mould <\/td>\n<\/tr>\n | ||||||
33<\/td>\n | 11.5 Compaction method using 4.5 kg rammer with 1 L mould <\/td>\n<\/tr>\n | ||||||
34<\/td>\n | Figure 7 \u2014 4.5 kg rammer for compaction test <\/td>\n<\/tr>\n | ||||||
36<\/td>\n | 11.6 Method using 4.5 kg rammer with CBR mould <\/td>\n<\/tr>\n | ||||||
37<\/td>\n | 11.7 Compaction method using vibrating hammer <\/td>\n<\/tr>\n | ||||||
38<\/td>\n | Figure 8 \u2014 Tampers for vibrating hammer compaction tests <\/td>\n<\/tr>\n | ||||||
39<\/td>\n | Table 4 \u2014 Grading for calibration sand <\/td>\n<\/tr>\n | ||||||
42<\/td>\n | 12 Determination of maximum and minimum dry densities for coarse soils 12.1 Determination of maximum density of sands <\/td>\n<\/tr>\n | ||||||
45<\/td>\n | 12.2 Maximum density of gravelly soils <\/td>\n<\/tr>\n | ||||||
47<\/td>\n | 12.3 Minimum density of sands <\/td>\n<\/tr>\n | ||||||
48<\/td>\n | 12.4 Minimum density of gravelly soils <\/td>\n<\/tr>\n | ||||||
50<\/td>\n | 12.5 Derivation of density index 13 Determination of moisture condition value (MCV) 13.1 General 13.2 Apparatus <\/td>\n<\/tr>\n | ||||||
51<\/td>\n | Figure 9 \u2014 Moisture condition apparatus <\/td>\n<\/tr>\n | ||||||
53<\/td>\n | 13.3 Checking the moisture condition apparatus 13.4 Determination of the MCV of a specimen of soil at its natural water content <\/td>\n<\/tr>\n | ||||||
55<\/td>\n | Figure 10 \u2014 Relationship between change in penetration and number of blows Figure 11 \u2014 Alternative type of relationship between change in penetration and number of blows <\/td>\n<\/tr>\n | ||||||
56<\/td>\n | 13.5 Determination of the MCV\/water content relation of a soil <\/td>\n<\/tr>\n | ||||||
57<\/td>\n | 13.6 Rapid assessment of whether a soil is stronger than a precalibrated standard <\/td>\n<\/tr>\n | ||||||
58<\/td>\n | 14 Determination of chalk crushing value (CCV) 14.1 General 14.2 Apparatus <\/td>\n<\/tr>\n | ||||||
59<\/td>\n | 14.3 Checking the moisture condition apparatus 14.4 Determination of the chalk crushing value (CCV) <\/td>\n<\/tr>\n | ||||||
60<\/td>\n | 15 Determination of California Bearing Ratio (CBR) <\/td>\n<\/tr>\n | ||||||
61<\/td>\n | 15.1 General 15.2 Preparation of test specimen <\/td>\n<\/tr>\n | ||||||
62<\/td>\n | Figure 12 \u2014 Flow chart representing specimen preparation methods for the CBR test <\/td>\n<\/tr>\n | ||||||
63<\/td>\n | Figure 13 \u2014 Cylindrical mould for the determination of the CBR <\/td>\n<\/tr>\n | ||||||
64<\/td>\n | Figure 14 \u2014 Plug and collar extension for use with cylindrical mould for the determination of the CBR <\/td>\n<\/tr>\n | ||||||
67<\/td>\n | 15.3 Soaking <\/td>\n<\/tr>\n | ||||||
68<\/td>\n | Figure 15 \u2014 Apparatus for measuring the swelling of a specimen during soaking for the CBR test <\/td>\n<\/tr>\n | ||||||
69<\/td>\n | 15.4 Penetration test procedure <\/td>\n<\/tr>\n | ||||||
70<\/td>\n | Figure 16 \u2014 General arrangement of apparatus for the CBR test <\/td>\n<\/tr>\n | ||||||
72<\/td>\n | 15.5 Calculation and plotting <\/td>\n<\/tr>\n | ||||||
73<\/td>\n | Figure 17 \u2014 Typical CBR test result curves (see 15.5.1.2) <\/td>\n<\/tr>\n | ||||||
75<\/td>\n | Figure 18 \u2014 Force penetration curves for a CBR value of 100% and other CBR values Table 5 \u2014 Standard force-penetration relationships for 100% CBR <\/td>\n<\/tr>\n | ||||||
76<\/td>\n | 15.6 Test report <\/td>\n<\/tr>\n | ||||||
77<\/td>\n | 16 Determination of one-dimensional consolidation properties 16.1 Test method 16.2 Test results <\/td>\n<\/tr>\n | ||||||
78<\/td>\n | 17 Determination of swelling and collapse characteristics 17.1 General 17.2 Apparatus 17.3 Measurement of swelling pressure <\/td>\n<\/tr>\n | ||||||
79<\/td>\n | 17.4 Measurement of swelling <\/td>\n<\/tr>\n | ||||||
81<\/td>\n | 17.5 Measurement of settlement on saturation <\/td>\n<\/tr>\n | ||||||
82<\/td>\n | 18 Determination of dispersibility 18.1 Pinhole method <\/td>\n<\/tr>\n | ||||||
83<\/td>\n | Figure 19 \u2014 Section of pinhole test apparatus <\/td>\n<\/tr>\n | ||||||
85<\/td>\n | Table 6 \u2014 Typical limiting rates of flow imposed by the apparatus <\/td>\n<\/tr>\n | ||||||
86<\/td>\n | Figure 20 \u2014 Flowchart for pinhole test procedure <\/td>\n<\/tr>\n | ||||||
87<\/td>\n | Table 7 \u2014 Classification of soils from pinhole test data <\/td>\n<\/tr>\n | ||||||
88<\/td>\n | 18.2 Crumb method <\/td>\n<\/tr>\n | ||||||
89<\/td>\n | 18.3 Dispersion method <\/td>\n<\/tr>\n | ||||||
90<\/td>\n | Figure 21 \u2014 Typical results from dispersion (double hydrometer) test <\/td>\n<\/tr>\n | ||||||
91<\/td>\n | 19 Determination of frost heave 19.1 General 19.2 Preparation of test specimens <\/td>\n<\/tr>\n | ||||||
92<\/td>\n | 19.3 Test procedure 20 Determination of consolidation properties using a hydraulic cell 20.1 General <\/td>\n<\/tr>\n | ||||||
93<\/td>\n | Figure 22 \u2014 Drainage and loading conditions for consolidation tests in hydraulic cells <\/td>\n<\/tr>\n | ||||||
94<\/td>\n | 20.2 Apparatus <\/td>\n<\/tr>\n | ||||||
96<\/td>\n | Figure 23 \u2014 Arrangement of hydraulic cell for vertical drainage consolidation [test type (a)] <\/td>\n<\/tr>\n | ||||||
97<\/td>\n | Figure 24 \u2014 Arrangement of hydraulic cell for radial drainage to centre and optional permeability stage <\/td>\n<\/tr>\n | ||||||
103<\/td>\n | Figure 25 \u2014 Arrangement for load calibration of diaphragm <\/td>\n<\/tr>\n | ||||||
106<\/td>\n | 20.3 Preparation of specimens <\/td>\n<\/tr>\n | ||||||
110<\/td>\n | 20.4 Cell assembly <\/td>\n<\/tr>\n | ||||||
113<\/td>\n | 20.5 Procedure for consolidation test with one-way vertical drainage <\/td>\n<\/tr>\n | ||||||
121<\/td>\n | Figure 26 \u2014 Derivation of t50 from log time curves <\/td>\n<\/tr>\n | ||||||
122<\/td>\n | Figure 27 \u2014 Derivation of t50 and t90 from power function curves <\/td>\n<\/tr>\n | ||||||
123<\/td>\n | Figure 28 \u2014 Temperature correction curve <\/td>\n<\/tr>\n | ||||||
125<\/td>\n | 20.6 Procedure for consolidation test with two-way vertical drainage <\/td>\n<\/tr>\n | ||||||
126<\/td>\n | 20.7 Procedure for consolidation test with drainage radially outwards <\/td>\n<\/tr>\n | ||||||
129<\/td>\n | 20.8 Procedure for consolidation test with drainage radially inwards <\/td>\n<\/tr>\n | ||||||
132<\/td>\n | 21 Determination of permeability in a hydraulic consolidation cell <\/td>\n<\/tr>\n | ||||||
133<\/td>\n | 21.1 General 21.2 Apparatus for preparation of specimens 21.3 Apparatus for permeability test <\/td>\n<\/tr>\n | ||||||
134<\/td>\n | 21.4 Calibration of apparatus <\/td>\n<\/tr>\n | ||||||
135<\/td>\n | 21.5 Preparation and checking of apparatus 21.6 Preparation of test specimen <\/td>\n<\/tr>\n | ||||||
136<\/td>\n | 21.7 Assembly of cell 21.8 Test procedures <\/td>\n<\/tr>\n | ||||||
138<\/td>\n | 21.9 Calculations <\/td>\n<\/tr>\n | ||||||
139<\/td>\n | 21.10 Test report <\/td>\n<\/tr>\n | ||||||
140<\/td>\n | 22 Determination of isotropic consolidation properties using a triaxial cell 22.1 Test method 22.2 Calculations <\/td>\n<\/tr>\n | ||||||
142<\/td>\n | 22.3 Test report <\/td>\n<\/tr>\n | ||||||
143<\/td>\n | 23 Determination of permeability 24 Determination of shear strength by the laboratory vane method 24.1 General 24.2 Apparatus <\/td>\n<\/tr>\n | ||||||
144<\/td>\n | Figure 29 \u2014 Laboratory vane apparatus <\/td>\n<\/tr>\n | ||||||
145<\/td>\n | 24.3 Procedure <\/td>\n<\/tr>\n | ||||||
146<\/td>\n | 24.4 Calculations <\/td>\n<\/tr>\n | ||||||
147<\/td>\n | 24.5 Test report 25 Determination of shear strength by direct shear (shearbox methods) 25.1 Shearbox methods <\/td>\n<\/tr>\n | ||||||
148<\/td>\n | 25.2 Determination of shear strength by the small shearbox apparatus 25.3 Determination of shear strength by the large shearbox apparatus <\/td>\n<\/tr>\n | ||||||
149<\/td>\n | 26 Determination of residual strength using the small ring shear apparatus 26.1 Test method 26.2 Test conditions 26.3 Test report 27 Determination of unconfined compressive strength 27.1 Test method <\/td>\n<\/tr>\n | ||||||
150<\/td>\n | 27.2 Test report 28 Unconsolidated undrained triaxial test 28.1 Type of test 28.2 Test conditions 28.3 Test report <\/td>\n<\/tr>\n | ||||||
151<\/td>\n | 29 Consolidated-undrained triaxial compression test with measurement of pore pressure 29.1 Test procedure <\/td>\n<\/tr>\n | ||||||
152<\/td>\n | 29.2 Test conditions 29.3 Test report 30 Consolidated-drained triaxial compression test with measurement of volume change 30.1 Test procedure <\/td>\n<\/tr>\n | ||||||
153<\/td>\n | 30.2 Test conditions 30.3 Test report <\/td>\n<\/tr>\n | ||||||
154<\/td>\n | Annex A (informative)\u2002 Example forms Figure A.1 \u2014 Example data sheet <\/td>\n<\/tr>\n | ||||||
155<\/td>\n | Figure A.2 \u2014 Example recording form <\/td>\n<\/tr>\n | ||||||
156<\/td>\n | Bibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" Methods of test for soils for civil engineering purposes – Classification tests and determination of geotechnical properties<\/b><\/p>\n |