{"id":356055,"date":"2024-10-20T01:10:43","date_gmt":"2024-10-20T01:10:43","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bs-iso-16269-62014\/"},"modified":"2024-10-26T01:31:29","modified_gmt":"2024-10-26T01:31:29","slug":"bs-iso-16269-62014","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bs-iso-16269-62014\/","title":{"rendered":"BS ISO 16269-6:2014"},"content":{"rendered":"
This part of ISO 16269 describes procedures for establishing statistical tolerance intervals that include at least a specified proportion of the population with a specified confidence level. Both one\u2011sided and two\u2011sided statistical tolerance intervals are provided, a one\u2011sided interval having either an upper or a lower limit while a two\u2011sided interval has both upper and lower limits. Two methods are provided, a parametric method for the case where the characteristic being studied has a normal distribution and a distribution\u2011free method for the case where nothing is known about the distribution except that it is continuous. There is also a procedure for the establishment of two\u2011sided statistical tolerance intervals for more than one normal sample with common unknown variance.<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
6<\/td>\n | Foreword <\/td>\n<\/tr>\n | ||||||
7<\/td>\n | Introduction <\/td>\n<\/tr>\n | ||||||
9<\/td>\n | Section sec_1 Section sec_2 Section sec_3 Section sec_3.1 Section sec_3.1.1 Section sec_3.1.2 1\tScope 2\tNormative references 3\tTerms, definitions and symbols 3.1\tTerms and definitions <\/td>\n<\/tr>\n | ||||||
10<\/td>\n | Section sec_3.1.3 Section sec_3.1.4 Section sec_3.2 3.2\tSymbols <\/td>\n<\/tr>\n | ||||||
11<\/td>\n | Section sec_4 Section sec_4.1 Section sec_4.2 4\tProcedures 4.1\tNormal population with known mean and known variance 4.2\tNormal population with unknown mean and known variance <\/td>\n<\/tr>\n | ||||||
12<\/td>\n | Section sec_4.3 Section sec_4.4 Section sec_4.5 Section sec_5 Section sec_5.1 Table tab_1 4.3\tNormal population with unknown mean and unknown variance 4.4\tNormal populations with unknown means and unknown common variance 4.5\tAny continuous distribution of unknown type 5\tExamples 5.1\tData for Examples 1 and 2 <\/td>\n<\/tr>\n | ||||||
13<\/td>\n | Section sec_5.2 5.2\tExample\u00a01: One\u2011sided statistical tolerance interval with unknown variance and unknown mean <\/td>\n<\/tr>\n | ||||||
14<\/td>\n | Section sec_5.3 Section sec_5.4 5.3\tExample\u00a02: Two\u2011sided statistical tolerance interval under unknown mean and unknown variance 5.4\tData for Examples\u00a03 and 4 <\/td>\n<\/tr>\n | ||||||
15<\/td>\n | Table tab_2 Section sec_5.5 5.5\tExample\u00a03: One\u2011sided statistical tolerance intervals for separate populations with unknown common variance <\/td>\n<\/tr>\n | ||||||
16<\/td>\n | Section sec_5.6 5.6\tExample\u00a04: Two\u2011sided statistical tolerance intervals for separate populations with unknown common variance <\/td>\n<\/tr>\n | ||||||
18<\/td>\n | Section sec_5.7 5.7\tExample\u00a05: Any distribution of unknown type <\/td>\n<\/tr>\n | ||||||
20<\/td>\n | Annex sec_A Annex sec_A.1 Annex\u00a0A \n(informative)<\/p>\n Exact k-factors for statistical tolerance intervals for the normal distribution <\/td>\n<\/tr>\n | ||||||
21<\/td>\n | Annex sec_A.2 Annex sec_A.3 <\/td>\n<\/tr>\n | ||||||
22<\/td>\n | Annex sec_A.4 <\/td>\n<\/tr>\n | ||||||
23<\/td>\n | Annex sec_A.5 <\/td>\n<\/tr>\n | ||||||
25<\/td>\n | Annex sec_B Annex\u00a0B \n(informative)<\/p>\n Forms for statistical tolerance intervals <\/td>\n<\/tr>\n | ||||||
29<\/td>\n | Annex sec_C Table tab_C.1 Annex\u00a0C \n(normative)<\/p>\n One\u2011sided statistical tolerance limit factors, kC(n;\u00a0p;\u00a01\u2212\u03b1), for unknown \u03c3 <\/td>\n<\/tr>\n | ||||||
30<\/td>\n | Table tab_C.2 <\/td>\n<\/tr>\n | ||||||
31<\/td>\n | Table tab_C.3 <\/td>\n<\/tr>\n | ||||||
32<\/td>\n | Table tab_C.4 <\/td>\n<\/tr>\n | ||||||
34<\/td>\n | Annex sec_D Table tab_D.1 Annex\u00a0D \n(normative)<\/p>\n Two\u2011sided statistical tolerance limit factors, kD(n; m;\u00a0p;\u00a01\u2212\u03b1), for unknown common \u03c3 (m samples) <\/td>\n<\/tr>\n | ||||||
35<\/td>\n | Table tab_D.2 <\/td>\n<\/tr>\n | ||||||
36<\/td>\n | Table tab_D.3 <\/td>\n<\/tr>\n | ||||||
37<\/td>\n | Table tab_D.4 <\/td>\n<\/tr>\n | ||||||
38<\/td>\n | Table tab_D.5 <\/td>\n<\/tr>\n | ||||||
39<\/td>\n | Table tab_D.6 <\/td>\n<\/tr>\n | ||||||
40<\/td>\n | Table tab_D.7 <\/td>\n<\/tr>\n | ||||||
42<\/td>\n | Table tab_D.8 <\/td>\n<\/tr>\n | ||||||
43<\/td>\n | Table tab_D.9 <\/td>\n<\/tr>\n | ||||||
44<\/td>\n | Table tab_D.10 <\/td>\n<\/tr>\n | ||||||
45<\/td>\n | Table tab_D.11 <\/td>\n<\/tr>\n | ||||||
46<\/td>\n | Table tab_D.12 <\/td>\n<\/tr>\n | ||||||
48<\/td>\n | Annex sec_E Table tab_E.1 Annex\u00a0E \n(normative)<\/p>\n Distribution\u2011free statistical tolerance intervals <\/td>\n<\/tr>\n | ||||||
49<\/td>\n | Table tab_E.2 <\/td>\n<\/tr>\n | ||||||
50<\/td>\n | Annex sec_F Annex\u00a0F \n(informative)<\/p>\n Computation of factors for two\u2011sided parametric statistical tolerance intervals <\/td>\n<\/tr>\n | ||||||
52<\/td>\n | Annex sec_G Annex sec_G.1 Annex sec_G.2 Annex\u00a0G \n(informative)<\/p>\n Construction of a distribution\u2011free statistical tolerance interval for any type of distribution Construction of a distribution\u2011free statistical tolerance interval for any type of distribution <\/td>\n<\/tr>\n | ||||||
54<\/td>\n | Reference ref_1 Reference ref_2 Reference ref_3 Reference ref_4 Reference ref_5 Reference ref_6 Reference ref_7 Reference ref_8 Reference ref_9 Reference ref_10 Reference ref_11 Reference ref_12 Reference ref_13 Reference ref_14 Reference ref_15 Reference ref_16 Reference ref_17 Reference ref_18 Reference ref_19 Bibliography Bibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" Statistical interpretation of data – Determination of statistical tolerance intervals<\/b><\/p>\n |