{"id":197543,"date":"2024-10-19T12:34:24","date_gmt":"2024-10-19T12:34:24","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/asa-s2-2-1959-r2016\/"},"modified":"2024-10-25T05:07:57","modified_gmt":"2024-10-25T05:07:57","slug":"asa-s2-2-1959-r2016","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/asa\/asa-s2-2-1959-r2016\/","title":{"rendered":"ASA S2.2 1959 R2016"},"content":{"rendered":"
None<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
6<\/td>\n | Introduction 1. Purpose and Scope 1. 1 Purpose 1.2 Scope 1.3 Present and :Future Choices of llethods 1.4 Related Standards <\/td>\n<\/tr>\n | ||||||
7<\/td>\n | 2. I)efinitions 2.1 Letter Symbols 2.2 Pickup <\/td>\n<\/tr>\n | ||||||
8<\/td>\n | 2.3 Input 2.4 Output 2.5 Sensitivity, Amplitude Sensitivity, Phase Lag 2.6 Amplitude Distortion, Frequency Distortion, Proportional Phase Lag, Phase Distortion <\/td>\n<\/tr>\n | ||||||
9<\/td>\n | 2.7 Calibration Factor 2.8 Transverse Sensitivity Ratio 2.9 Exciter 2.10 Damping Ratio 2.11 Undamped Xatural Frequency 2.12 Damped ~atural 1”requency 2.13 Resouant J,’requency 3. Characteristics to be Measured 3.1 General 3.2 Direct Response <\/td>\n<\/tr>\n | ||||||
10<\/td>\n | 3.:3 Response to Motion in Other Directions and About Other Axes 3.4 Damping Ratio and Undamped Xatural Frequency Figures \n Fig. 1 Response of Idealized Linear Acceleration Pickup <\/td>\n<\/tr>\n | ||||||
11<\/td>\n | Fig. 2 Response of Idealized Linear Displacement or Velocity Pickup Fig. 3 Phase Lag of Idealized Linear Pickup <\/td>\n<\/tr>\n | ||||||
12<\/td>\n | 3.5 Xonlinearity 4. Standard Calibration Methods Fig. 4 Response of Idealized Linear Pickup to & Sudden Impulse <\/td>\n<\/tr>\n | ||||||
13<\/td>\n | 4.1 Tabulation of Staodard Methods 4.2 Tilting Support Calibrat-or Table 1 :Estimated Ranges and Errors of Standard Methods <\/td>\n<\/tr>\n | ||||||
14<\/td>\n | 4.3 Centrifuge Calibrator Fig. 5 Tilting Support for Static Calibration of Acceleration Pickups <\/td>\n<\/tr>\n | ||||||
15<\/td>\n | 4.4 Rectilinear Electrodynamic Vibration Pickup Calibrator Fig. 6 Schematic Cross-aectional View of Rectilinear Electrodynamic Vibration Pickup \n Calibrator <\/td>\n<\/tr>\n | ||||||
16<\/td>\n | 4.4.l Sensitivity of Electrodynamic Calibrator I)eterrnined by Reciprocity Method <\/td>\n<\/tr>\n | ||||||
17<\/td>\n | 4.4.2 Calibration of Vibration Pickups on Calibrator, General lletho<l <\/td>\n<\/tr>\n | ||||||
18<\/td>\n | 4.5 Physical Pendulum Calibrator Fig. 7 Circuit for Calibration by Method A <\/td>\n<\/tr>\n | ||||||
19<\/td>\n | Fig. 8 Pendulum Calibrator <\/td>\n<\/tr>\n | ||||||
20<\/td>\n | 4.6 Ballistic Pendulum Calibrator Fig. 9 Recorded Output of Pickup on Physical Pendulum Calibrator Fig. 10 Calibration of Pickup A on Ballistic Pendulum Calibrator <\/td>\n<\/tr>\n | ||||||
21<\/td>\n | Fig. 11 Simple RC Network for Integrating Pickup Output Fig. 12 Compariaon Method for Calibrating Pickup 2 Against Calibrated Pickup l <\/td>\n<\/tr>\n | ||||||
23<\/td>\n | 5. Calibration by Comparison with Calibrated Pickup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2’2 \n Appendix \n A 1. Survey of Other Calibration ::Iethods Al.I Static Calibration Methods Al.1.1 Static Load llethod Al.2 Dynamic Calibration by Sinusoidal Excitation Fig. Al Vibrating Wedge <\/td>\n<\/tr>\n | ||||||
24<\/td>\n | Al.2.1 Rectilinear Vibration Exciter <\/td>\n<\/tr>\n | ||||||
25<\/td>\n | Al.2.2 Angular Vibration Exciter Fig. A2 Rectilinear Vibration Pickup Calibrator with Piezoelectric Drive <\/td>\n<\/tr>\n | ||||||
26<\/td>\n | -~l.2.3 TIited Centrifuge Al.2.4 Dual Centrifuge Al.2.5 Resonant Beam Vibrator Fig. A3 Dual Centrifuge <\/td>\n<\/tr>\n | ||||||
27<\/td>\n | Al.2.6 Acoustical Cavity Method Al.2.i Condenser Microphone llethod Fig. A4 Resona.nt Beam Vibrator <\/td>\n<\/tr>\n | ||||||
28<\/td>\n | A 1.3 Dynamic Calibration by Transient Excitation Al.3.1 Free-Fall Test Fig. A5 Impact Load Acting on Maas and Displacement of Mass of Linear Mass-Spring \n System, with Natural Period T <\/td>\n<\/tr>\n | ||||||
29<\/td>\n | Al.3.2 Pulse Calibrator \u2022 .1.3.3 Air Gun Al.3.4 Shock Test Applying Measured Impact AcceJeration Fig. A6 Typical Oscillograph Record from Free-Fall Test of Velocity Pickup Fig. A7 Shock Teat Applying Measured Impact Acceleration <\/td>\n<\/tr>\n | ||||||
30<\/td>\n | Al.3.5 Hydraulic Shock Test Al.3.6 Impact Drop Test Al.3. 7 Elastic Pulses in Long Bars A2. Theory of Reciprocity Method for Linear ElectromechanicaJ Pickups <\/td>\n<\/tr>\n | ||||||
32<\/td>\n | A3. Reciprocity Method for Electrodynamic Calibrators A3.1 Theory <\/td>\n<\/tr>\n | ||||||
34<\/td>\n | A3.2 Measureinents Fig. A8 Circuits and Polygons for Making Transfer Admittance Measurements on Electrodynamic \n Calibrator and Pickups <\/td>\n<\/tr>\n | ||||||
35<\/td>\n | A3.2. l Transfer Admittance !feasurements A3.2.2 Voltage Ratio Measurements <\/td>\n<\/tr>\n | ||||||
36<\/td>\n | Fig. A9 Circuits and Polygons for Making Voltage Ratio Measurements on Electrodynamic \n Calibrator <\/td>\n<\/tr>\n | ||||||
37<\/td>\n | References <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" ANSI\/ASA S2.2-1959 (R2016) American National Standard Methods for the Calibration of Shock and Vibration Pickups<\/b><\/p>\n |