{"id":437648,"date":"2024-10-20T08:00:09","date_gmt":"2024-10-20T08:00:09","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/ieee-c62-82-2-2022-3\/"},"modified":"2024-10-26T15:02:50","modified_gmt":"2024-10-26T15:02:50","slug":"ieee-c62-82-2-2022-3","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/ieee\/ieee-c62-82-2-2022-3\/","title":{"rendered":"IEEE C62.82.2-2022"},"content":{"rendered":"
Revision Standard – Active. The calculation method for selection of phase-to-ground and phase-to-phase insulation withstand voltages for equipment is presented. Methods for insulation coordination of different air-insulated systems like transmission lines and substations are outlined. The methods of analysis are illustrated by practical examples.<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
1<\/td>\n | Front Cover <\/td>\n<\/tr>\n | ||||||
2<\/td>\n | Title page <\/td>\n<\/tr>\n | ||||||
4<\/td>\n | Important Notices and Disclaimers Concerning IEEE Standards Documents <\/td>\n<\/tr>\n | ||||||
8<\/td>\n | Participants <\/td>\n<\/tr>\n | ||||||
10<\/td>\n | Introduction <\/td>\n<\/tr>\n | ||||||
11<\/td>\n | Contents <\/td>\n<\/tr>\n | ||||||
12<\/td>\n | 1. Overview 1.1 Scope 1.2 Purpose 1.3 Word usage <\/td>\n<\/tr>\n | ||||||
13<\/td>\n | 2. Normative references <\/td>\n<\/tr>\n | ||||||
14<\/td>\n | 3. Voltage stresses 3.1 Origin and classification of voltage stresses 3.1.1 Continuous power frequency voltages 3.1.2 Temporary overvoltages 3.1.2.1 Fault overvoltages <\/td>\n<\/tr>\n | ||||||
15<\/td>\n | 3.1.2.2 Load rejection overvoltages 3.1.2.3 Resonance and ferroresonance overvoltages <\/td>\n<\/tr>\n | ||||||
16<\/td>\n | 3.1.2.4 Transformer energization caused overvoltages 3.1.2.5 Limitation of temporary overvoltages by surge arresters 3.1.3 Switching overvoltages 3.1.3.1 Line energization and reclosing overvoltages <\/td>\n<\/tr>\n | ||||||
17<\/td>\n | 3.1.3.2 Typical phase\u2013ground switching overvoltages <\/td>\n<\/tr>\n | ||||||
18<\/td>\n | 3.1.3.3 Typical phase\u2013phase switching overvoltages <\/td>\n<\/tr>\n | ||||||
19<\/td>\n | 3.1.3.4 Longitudinal switching overvoltages 3.1.3.5 Fault overvoltages <\/td>\n<\/tr>\n | ||||||
20<\/td>\n | 3.1.3.6 Load rejection overvoltages 3.1.3.7 Inductive and capacitive currents switching overvoltages 3.1.4 Lightning overvoltages <\/td>\n<\/tr>\n | ||||||
21<\/td>\n | 3.1.4.1 Lightning overvoltages caused by switching 3.1.4.2 Limitation of lightning overvoltages 3.2 Characteristics of overvoltage protective devices 3.2.1 General <\/td>\n<\/tr>\n | ||||||
22<\/td>\n | 3.2.2 Gapless metal-oxide surge arresters 3.2.2.1 Lightning overvoltages 3.2.2.2 Switching overvoltages <\/td>\n<\/tr>\n | ||||||
23<\/td>\n | 3.2.3 Gapped metal-oxide arrester 3.2.4 Gapped silicon-carbide arresters 3.2.4.1 Lightning overvoltages <\/td>\n<\/tr>\n | ||||||
24<\/td>\n | 3.2.4.2 Switching overvoltages 3.2.5 Spark gaps <\/td>\n<\/tr>\n | ||||||
25<\/td>\n | 4. Insulation strength 4.1 General 4.1.1 Self-restoring insulation 4.1.2 Non\u2013self-restoring insulation 4.2 Insulation behavior at power frequency voltages <\/td>\n<\/tr>\n | ||||||
26<\/td>\n | 4.3 Influences of atmospheric conditions on external insulation 4.4 Probability of disruptive discharge <\/td>\n<\/tr>\n | ||||||
27<\/td>\n | 4.5 Influence of polarity and overvoltage shape 4.6 Phase\u2013phase and longitudinal insulation <\/td>\n<\/tr>\n | ||||||
28<\/td>\n | 5. Performance\/reliability criterion 5.1 Transmission lines 5.2 Substations <\/td>\n<\/tr>\n | ||||||
29<\/td>\n | 6. Insulation coordination procedures 6.1 Procedures for continuous power frequency voltage and temporary overvoltages 6.1.1 General 6.1.2 Design approach 6.1.3 Contamination severity <\/td>\n<\/tr>\n | ||||||
30<\/td>\n | 6.1.4 Insulation strength\u2014IEEE recommendations <\/td>\n<\/tr>\n | ||||||
32<\/td>\n | 6.1.5 Insulation strength\u2014CIGRE recommendations <\/td>\n<\/tr>\n | ||||||
33<\/td>\n | 6.1.6 Insulation strength\u2014IEC recommendation <\/td>\n<\/tr>\n | ||||||
35<\/td>\n | 6.1.7 Comparison 6.1.8 Switching impulse and lightning impulse strength 6.1.9 Effect of elevation <\/td>\n<\/tr>\n | ||||||
36<\/td>\n | 6.1.10 Methods to improve performance 6.2 Procedures for switching overvoltages (SOVs) 6.2.1 Transmission lines\u2014phase to ground 6.2.1.1 General <\/td>\n<\/tr>\n | ||||||
37<\/td>\n | 6.2.1.2 Stress <\/td>\n<\/tr>\n | ||||||
38<\/td>\n | 6.2.1.3 Strength <\/td>\n<\/tr>\n | ||||||
40<\/td>\n | 6.2.1.4 Sensitivity <\/td>\n<\/tr>\n | ||||||
41<\/td>\n | 6.2.1.5 Design criteria 6.2.2 Transmission lines\u2014phase to phase 6.2.2.1 General 6.2.2.2 Self-restoring insulation <\/td>\n<\/tr>\n | ||||||
44<\/td>\n | 6.2.3 Substations phase to ground 6.2.3.1 Self-restoring insulation <\/td>\n<\/tr>\n | ||||||
46<\/td>\n | 6.2.3.2 Non\u2013self-restoring insulation 6.2.3.3 Example <\/td>\n<\/tr>\n | ||||||
47<\/td>\n | 6.2.4 Substations phase to phase 6.2.4.1 General <\/td>\n<\/tr>\n | ||||||
49<\/td>\n | 6.2.4.2 Example 6.3 Procedures for lightning overvoltages 6.3.1 Transmission lines <\/td>\n<\/tr>\n | ||||||
50<\/td>\n | 6.3.1.1 Shielding failures 6.3.1.2 Backflash <\/td>\n<\/tr>\n | ||||||
52<\/td>\n | 6.3.1.3 Improving performance of existing lines 6.3.1.4 Example\u2014shielding failure <\/td>\n<\/tr>\n | ||||||
53<\/td>\n | 6.3.1.5 Example\u2014backflash <\/td>\n<\/tr>\n | ||||||
54<\/td>\n | 6.3.2 Substations 6.3.2.1 Shielding 6.3.2.2 Open breaker position <\/td>\n<\/tr>\n | ||||||
55<\/td>\n | 6.3.2.3 Selection of the incoming surge <\/td>\n<\/tr>\n | ||||||
57<\/td>\n | 6.3.2.4 Contingency conditions 6.3.2.5 Selection of arrester rating and preliminary location of arresters <\/td>\n<\/tr>\n | ||||||
58<\/td>\n | 6.3.2.6 Digital transient program model <\/td>\n<\/tr>\n | ||||||
59<\/td>\n | 6.3.2.7 Selection of BILs and clearances 6.3.3 Simplified method for a simple substation <\/td>\n<\/tr>\n | ||||||
60<\/td>\n | 6.3.3.1 Incoming surge <\/td>\n<\/tr>\n | ||||||
61<\/td>\n | 6.3.3.2 Voltage at equipment <\/td>\n<\/tr>\n | ||||||
64<\/td>\n | 6.3.3.3 Estimating the BIL and clearance <\/td>\n<\/tr>\n | ||||||
65<\/td>\n | 6.3.4 Application examples 6.3.4.1 Single-line station <\/td>\n<\/tr>\n | ||||||
72<\/td>\n | 6.3.4.2 Two-line station <\/td>\n<\/tr>\n | ||||||
75<\/td>\n | 6.3.4.3 Contingency conditions <\/td>\n<\/tr>\n | ||||||
77<\/td>\n | 6.3.5 Clearances for lightning stroke <\/td>\n<\/tr>\n | ||||||
79<\/td>\n | 7. Final selection 7.1 Transmission lines 7.2 Substations <\/td>\n<\/tr>\n | ||||||
81<\/td>\n | Annex A (informative) Bibliography <\/td>\n<\/tr>\n | ||||||
83<\/td>\n | Back Cover <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" IEEE Guide for the Application of Insulation Coordination (Published)<\/b><\/p>\n |