{"id":425469,"date":"2024-10-20T06:57:01","date_gmt":"2024-10-20T06:57:01","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bsi-pd-iec-tr-61850-90-92020-2\/"},"modified":"2024-10-26T13:06:21","modified_gmt":"2024-10-26T13:06:21","slug":"bsi-pd-iec-tr-61850-90-92020-2","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bsi-pd-iec-tr-61850-90-92020-2\/","title":{"rendered":"BSI PD IEC TR 61850-90-9:2020"},"content":{"rendered":"
1.1 Scope of this document<\/b><\/p>\n
This technical report, which is part of the IEC 61850 series, describes the IEC 61850 information model for electrical energy storage systems (EESS). Therefore, this document only focuses on storage functionality in the purpose of grid integration of such systems at the DER unit level. Higher level Interactions are already covered in IEC 61850-7-420.<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
2<\/td>\n | undefined <\/td>\n<\/tr>\n | ||||||
4<\/td>\n | CONTENTS <\/td>\n<\/tr>\n | ||||||
8<\/td>\n | FOREWORD <\/td>\n<\/tr>\n | ||||||
9<\/td>\n | Tables Table 1 \u2013 Tracking information of (Tr)IEC 61850-90-9:2018A namespace building-up <\/td>\n<\/tr>\n | ||||||
10<\/td>\n | INTRODUCTION <\/td>\n<\/tr>\n | ||||||
12<\/td>\n | 1 Scope 1.1 Scope of this document 1.2 Namespace 1.3 Data model Namespace Code Component distribution Table 2 \u2013 Attributes of (Tr)IEC 61850-90-9:2018A namespace <\/td>\n<\/tr>\n | ||||||
13<\/td>\n | 2 Normative references <\/td>\n<\/tr>\n | ||||||
14<\/td>\n | 3 Terms, definitions and abbreviated terms 3.1 Terms and definitions <\/td>\n<\/tr>\n | ||||||
16<\/td>\n | 3.2 Abbreviated terms 3.3 Acronyms and abbreviated terms proposed specifically for the data model part of this document Table 3 \u2013 Generic acronyms and abbreviated terms <\/td>\n<\/tr>\n | ||||||
17<\/td>\n | 3.4 Common abbreviated terms used for the data model part of this document Table 4 \u2013 Normative abbreviations for data object names <\/td>\n<\/tr>\n | ||||||
18<\/td>\n | Table 5 \u2013 Normative abbreviations for data object names <\/td>\n<\/tr>\n | ||||||
36<\/td>\n | 4 Overview of EESS 4.1 EESS system description Figures Figure 1 \u2013 Classification of electrical energy storage systems according to energy form. IEC-WP [IEC White Paper Electrical Energy Storage:2011]) <\/td>\n<\/tr>\n | ||||||
37<\/td>\n | 4.2 Functional requirements of EESS 4.3 EESS participating in grid operations as a DER system 4.3.1 General Figure 2 \u2013 Different uses of electrical energy storage in grids, depending on the frequency and duration of use <\/td>\n<\/tr>\n | ||||||
38<\/td>\n | 4.3.2 Constraints, assumptions, and design considerations 4.4 Hierarchical class model of DER resources <\/td>\n<\/tr>\n | ||||||
39<\/td>\n | 4.5 DER resource class and composition model for EESS 4.5.1 General 4.5.2 DER class model principles for a single storage unit Figure 3 \u2013 Simple storage resource model of a battery storage unit (instance & class) <\/td>\n<\/tr>\n | ||||||
40<\/td>\n | Figure 4 \u2013 Hierarchical class model of DER resources \u2013 (blue outlined area showing EESS) <\/td>\n<\/tr>\n | ||||||
41<\/td>\n | 4.5.3 Expressing the composition of storage elements Figure 5 \u2013 Exposing the generic interface of a DER unit (Case of a storage unit as an example) <\/td>\n<\/tr>\n | ||||||
42<\/td>\n | Figure 6 \u2013 DER composition model principles <\/td>\n<\/tr>\n | ||||||
43<\/td>\n | 4.5.4 Expressing equivalent capabilities Figure 7 \u2013 LN mapping related to a storage system composed of two storage units <\/td>\n<\/tr>\n | ||||||
44<\/td>\n | Figure 8 \u2013 Needed association to express DER generic capabilities <\/td>\n<\/tr>\n | ||||||
45<\/td>\n | 4.5.5 Complete DER model resulting from equivalent and composed principles Figure 9 \u2013 Exposing the generic interfaces of a storage DER (battery storage as example) <\/td>\n<\/tr>\n | ||||||
46<\/td>\n | Figure 10 \u2013 Principles of the hierarchical class model of DER resources with examples of specific DER types at the lowest level (blue outlined area showing EESS) <\/td>\n<\/tr>\n | ||||||
47<\/td>\n | 4.5.6 LN mapping example in case of a complex storage installation Figure 11 \u2013 LN mapping of an EESS composed of 2 storage units with equivalent capabilities defined at all levels <\/td>\n<\/tr>\n | ||||||
48<\/td>\n | Figure 12 \u2013 A simple electrical energy storage system Figure 13 \u2013 A more complex electrical mixed system, including storage \u2013example of possible LN mapping <\/td>\n<\/tr>\n | ||||||
49<\/td>\n | 4.6 State machine of the EESS <\/td>\n<\/tr>\n | ||||||
50<\/td>\n | Figure 14 \u2013 DER common state diagram <\/td>\n<\/tr>\n | ||||||
51<\/td>\n | 4.7 Definitions of the capacity and the state of charge of an EESS Figure 15 \u2013 Logic definitions associated to the DER common state diagram <\/td>\n<\/tr>\n | ||||||
52<\/td>\n | 5 Use cases 5.1 General 5.2 Use case overview 5.2.1 Diagram Figure 16 \u2013 EESS state of charge: effective and usable capacities and states of charge reflected using the IEC 618650 model naming conventions <\/td>\n<\/tr>\n | ||||||
53<\/td>\n | 5.2.2 Actors 5.2.3 List of use cases Figure 17 \u2013 Use case diagram Table 6 \u2013 List of actors <\/td>\n<\/tr>\n | ||||||
54<\/td>\n | 5.2.4 Information flow (basic flow) Figure 18 \u2013 The entire sequence of EESS use cases Table 7 \u2013 List of use cases <\/td>\n<\/tr>\n | ||||||
55<\/td>\n | Figure 19 \u2013 Sequence of UC1: retrieving current capabilities\/status of EESS information to Storage Management System Table 8 \u2013 Information exchange in UC1: Sequence of retrieving current capabilities\/status of EESS information to Storage Management System <\/td>\n<\/tr>\n | ||||||
56<\/td>\n | Table 9 \u2013 Information exchange Step1-2 in UC1 current capability \/status information <\/td>\n<\/tr>\n | ||||||
57<\/td>\n | Figure 20 \u2013 Sequence of UC2: set Charging power to EESS Figure 21 \u2013 Sequence of UC3: Set discharging power to EESS Table 10 \u2013 Information exchange in UC2: Set Charging power to EESS <\/td>\n<\/tr>\n | ||||||
58<\/td>\n | Figure 22 \u2013 Sequence of UC4: set operational function\/schedule to EESS Table 11 \u2013 Information exchange in UC3: Set discharging power to EESS Table 12 \u2013 Information exchange in UC4: set operational function to EESS <\/td>\n<\/tr>\n | ||||||
59<\/td>\n | 5.2.5 Summary of exchanged information in use cases Figure 23 \u2013 Sequence of UC5: Alarm\/Asset Monitoring of EESS Table 13 \u2013 Information exchange in UC4: set schedule to EESS Table 14 \u2013 Information exchange in UC5: Alarm\/Asset Monitoring of EESS <\/td>\n<\/tr>\n | ||||||
60<\/td>\n | Table 15 \u2013 Summary of exchanged Information in use cases with corresponding DOs\/LNs <\/td>\n<\/tr>\n | ||||||
64<\/td>\n | 6 IEC 61850 based information modelling 6.1 Logical Nodes from 61850-90-9 namespace 6.1.1 General Figure 24 \u2013 Class diagram LogicalNodes_90_9::StorageLNs_Global arrangement <\/td>\n<\/tr>\n | ||||||
65<\/td>\n | Figure 25 \u2013 Class diagram LogicalNodes_90_9::StorageLNs_Details <\/td>\n<\/tr>\n | ||||||
66<\/td>\n | Figure 26 \u2013 Class diagram LogicalNodes_90_9::StorageLNs_90_9_1 <\/td>\n<\/tr>\n | ||||||
67<\/td>\n | Figure 27 \u2013 Class diagram LogicalNodes_90_9::StorageLNs_90_9_2 <\/td>\n<\/tr>\n | ||||||
68<\/td>\n | 6.1.2 Abstract LNs related to the 61850-90-9 namespace (AbstractLN_90_9) Table 16 \u2013 Data objects of Storage_Control_LN Table 17 \u2013 Data objects of StorageOperationalSettingsLN <\/td>\n<\/tr>\n | ||||||
70<\/td>\n | Table 18 \u2013 Data objects of StorageNameplateRatingsLN <\/td>\n<\/tr>\n | ||||||
72<\/td>\n | Table 19 \u2013 Data objects of DER_StorageLN <\/td>\n<\/tr>\n | ||||||
73<\/td>\n | 6.1.3 Logical Nodes from Group D (LNGroupD_90_9) Table 20 \u2013 Data objects of DBAT <\/td>\n<\/tr>\n | ||||||
76<\/td>\n | Table 21 \u2013 Data objects of DSTO <\/td>\n<\/tr>\n | ||||||
80<\/td>\n | 6.1.4 Logical Nodes from Group S (LNGroupS_90_9) Table 22 \u2013 Data objects of SBAT <\/td>\n<\/tr>\n | ||||||
83<\/td>\n | 6.2 Enumerations 6.2.1 General <\/td>\n<\/tr>\n | ||||||
84<\/td>\n | 6.2.2 Battery Test Results (BatteryTestResultKind) 6.2.3 Type of Battery (BatteryTypeKind) Figure 28 \u2013 Class diagram DOEnums_90_9::DOEnums_90_9 Table 23 \u2013 Literals of BatteryTestResultKind <\/td>\n<\/tr>\n | ||||||
85<\/td>\n | 6.2.4 Storage charging\/discharging permissions (ChargeSourceKind) Table 24 \u2013 Literals of BatteryTypeKind Table 25 \u2013 Literals of ChargeSourceKind <\/td>\n<\/tr>\n | ||||||
86<\/td>\n | Annex A (informative)Concrete case 1&2: YSCP (Yokohama Smart City Project) DER MS (Battery SCADA) system use cases A.1 System use cases #1: Online power system control with aggregated battery based EESS (virtual energy storage) A.1.1 Descriptions of function <\/td>\n<\/tr>\n | ||||||
87<\/td>\n | Figure A.1 \u2013 Load Frequency control by battery aggregation <\/td>\n<\/tr>\n | ||||||
88<\/td>\n | Figure A.2 \u2013 Actors <\/td>\n<\/tr>\n | ||||||
90<\/td>\n | A.1.2 Step by step analysis of function <\/td>\n<\/tr>\n | ||||||
99<\/td>\n | A.1.3 Auxiliary issues \u2013 Revision history A.2 System use case #2 Active power schedule updating by using aggregated battery-based EESS A.2.1 Descriptions of function <\/td>\n<\/tr>\n | ||||||
106<\/td>\n | Figure A.3 \u2013 Calculation of the total surplus potential for the default plan Figure A.4 \u2013 Calculation of the schedule of batteries for the default plan <\/td>\n<\/tr>\n | ||||||
107<\/td>\n | Figure A.5 \u2013 Calculation of the schedule of batteries for the default plan Figure A.6 \u2013 Calculation of the schedule of batteries for the plan <\/td>\n<\/tr>\n | ||||||
108<\/td>\n | A.2.2 Step by step analysis of function <\/td>\n<\/tr>\n | ||||||
115<\/td>\n | A.2.3 Auxiliary issues \u2013 Revision history <\/td>\n<\/tr>\n | ||||||
116<\/td>\n | Annex B (informative)DER functions to meet EESS energy application requirements <\/td>\n<\/tr>\n | ||||||
120<\/td>\n | Annex C (informative)Energy service by electrical energy storage system use case #1(Energy supply and demand adjustment using customer\u2019s battery system) C.1 Use case description C.1.1 Use case name C.1.2 Use case scope and objectives <\/td>\n<\/tr>\n | ||||||
121<\/td>\n | C.1.3 Use case detailed description <\/td>\n<\/tr>\n | ||||||
122<\/td>\n | C.2 Use case diagrams <\/td>\n<\/tr>\n | ||||||
125<\/td>\n | C.3 Technical details \u2013 Actors <\/td>\n<\/tr>\n | ||||||
126<\/td>\n | C.4 Information exchanged <\/td>\n<\/tr>\n | ||||||
127<\/td>\n | Bibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" Communication networks and systems for power utility automation – Use of IEC 61850 for Electrical Energy Storage Systems<\/b><\/p>\n |