{"id":399199,"date":"2024-10-20T04:41:13","date_gmt":"2024-10-20T04:41:13","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/ieee-60980-344-2020\/"},"modified":"2024-10-26T08:29:14","modified_gmt":"2024-10-26T08:29:14","slug":"ieee-60980-344-2020","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/ieee\/ieee-60980-344-2020\/","title":{"rendered":"IEEE 60980-344-2020"},"content":{"rendered":"
Revision Standard – Active.<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
1<\/td>\n | IEC\/IEEE 60980-344-2020 Front Cover <\/td>\n<\/tr>\n | ||||||
3<\/td>\n | Title page <\/td>\n<\/tr>\n | ||||||
4<\/td>\n | CONTENTS <\/td>\n<\/tr>\n | ||||||
8<\/td>\n | FOREWORD <\/td>\n<\/tr>\n | ||||||
10<\/td>\n | INTRODUCTION <\/td>\n<\/tr>\n | ||||||
13<\/td>\n | 1 Scope 2 Normative references 3 Terms and definitions <\/td>\n<\/tr>\n | ||||||
21<\/td>\n | 4 Abbreviated terms <\/td>\n<\/tr>\n | ||||||
22<\/td>\n | 5 General discussion of earthquake environment and equipment response 5.1 General 5.2 Earthquake environment 5.3 Equipment on foundations 5.4 Equipment on structures <\/td>\n<\/tr>\n | ||||||
23<\/td>\n | 5.5 Interfaces and adverse interactions 5.6 Simulating vibration induced by an earthquake 5.6.1 General 5.6.2 Response spectrum <\/td>\n<\/tr>\n | ||||||
24<\/td>\n | 5.6.3 Time history 5.6.4 PSD function 5.7 Damping 5.7.1 General <\/td>\n<\/tr>\n | ||||||
25<\/td>\n | 5.7.2 Measurement of damping 5.8 Application of damping 5.8.1 General 5.8.2 Application of damping in testing <\/td>\n<\/tr>\n | ||||||
26<\/td>\n | 5.8.3 Application of damping in analysis 6 Seismic qualification requirements 6.1 General <\/td>\n<\/tr>\n | ||||||
27<\/td>\n | 6.2 Specification of equipment to be qualified 6.3 Specification of ageing condition 6.4 Specification of seismic requirements 6.5 Specification of acceptance criteria <\/td>\n<\/tr>\n | ||||||
28<\/td>\n | 7 Seismic qualification approach 7.1 Safety function 7.2 Seismic qualification methods <\/td>\n<\/tr>\n | ||||||
29<\/td>\n | 8 Ageing 8.1 General <\/td>\n<\/tr>\n | ||||||
30<\/td>\n | 8.2 Thermal ageing 8.3 Radiation ageing 8.4 Material degradation and corrosion 8.5 Mechanical or electrical cycle ageing 8.6 Vibration ageing 8.6.1 General <\/td>\n<\/tr>\n | ||||||
31<\/td>\n | 8.6.2 Ageing from non-seismic vibration conditions 8.6.3 Hydrodynamic loads 8.6.4 Seismic ageing (OBE\/S1) 9 Testing 9.1 General 9.1.1 Test programme <\/td>\n<\/tr>\n | ||||||
33<\/td>\n | 9.1.2 Mounting 9.1.3 Monitoring 9.1.4 Loading <\/td>\n<\/tr>\n | ||||||
34<\/td>\n | 9.1.5 Refurbishment 9.1.6 Exploratory tests <\/td>\n<\/tr>\n | ||||||
36<\/td>\n | 9.1.7 Seismic ageing (OBE\/S1) 9.2 Proof and generic testing <\/td>\n<\/tr>\n | ||||||
37<\/td>\n | 9.3 Fragility testing 9.4 Component testing 9.5 Assembly testing 9.5.1 General <\/td>\n<\/tr>\n | ||||||
38<\/td>\n | 9.6 Test methods 9.6.1 General <\/td>\n<\/tr>\n | ||||||
39<\/td>\n | 9.6.2 Single-frequency test <\/td>\n<\/tr>\n | ||||||
41<\/td>\n | Figures Figure 1 \u2013 Sine beat Figure 2 \u2013 Decaying sine <\/td>\n<\/tr>\n | ||||||
42<\/td>\n | 9.6.3 Multiple-frequency tests <\/td>\n<\/tr>\n | ||||||
45<\/td>\n | Figure 3 \u2013 Random spectrum with superimposed sine beats <\/td>\n<\/tr>\n | ||||||
46<\/td>\n | Figure 4 \u2013 Resonant amplification versus cycles per beat <\/td>\n<\/tr>\n | ||||||
47<\/td>\n | 9.6.4 Other tests 9.6.5 Test duration and low-cycle fatigue potential 9.6.6 Multi-axis tests <\/td>\n<\/tr>\n | ||||||
49<\/td>\n | 9.6.7 Line-mounted equipment <\/td>\n<\/tr>\n | ||||||
50<\/td>\n | 9.6.8 Additional tests 9.7 Test documentation 10 Qualification by similarity 10.1 General 10.2 Excitation 10.3 Physical systems <\/td>\n<\/tr>\n | ||||||
51<\/td>\n | 10.4 Safety function 11 Analysis 11.1 General <\/td>\n<\/tr>\n | ||||||
52<\/td>\n | 11.2 Seismic analysis methods 11.2.1 General <\/td>\n<\/tr>\n | ||||||
53<\/td>\n | 11.2.2 Static analysis 11.2.3 Static coefficient analysis 11.2.4 Dynamic analysis <\/td>\n<\/tr>\n | ||||||
54<\/td>\n | 11.3 Nonlinear equipment response 11.4 Other dynamic loads 11.5 Seismic analysis results <\/td>\n<\/tr>\n | ||||||
55<\/td>\n | 11.6 Documentation of analysis 12 Combined analysis and testing 12.1 General 12.2 Modal testing 12.2.1 General 12.2.2 Normal-mode method <\/td>\n<\/tr>\n | ||||||
56<\/td>\n | 12.2.3 Transfer-function method 12.2.4 Analytical methods utilizing test data 12.2.5 Qualification 12.3 Extrapolation for similar equipment 12.3.1 General 12.3.2 Test method <\/td>\n<\/tr>\n | ||||||
57<\/td>\n | 12.3.3 Analysis 12.4 Shock testing 12.5 Extrapolation for multi-cabinet assemblies 12.6 Other test\/analysis <\/td>\n<\/tr>\n | ||||||
58<\/td>\n | 13 Documentation 13.1 General 13.2 Seismic qualification report 13.2.1 General 13.2.2 Analysis 13.2.3 Testing <\/td>\n<\/tr>\n | ||||||
59<\/td>\n | 13.2.4 Combined analysis and testing or similarity <\/td>\n<\/tr>\n | ||||||
60<\/td>\n | Annex A (normative) Experience-based seismic qualification A.1 General A.2 Earthquake experience data A.2.1 General A.2.2 Characterization of the earthquake experience motions <\/td>\n<\/tr>\n | ||||||
61<\/td>\n | A.2.3 Earthquake experience spectrum (EES) A.2.4 Characterization of reference equipment class <\/td>\n<\/tr>\n | ||||||
62<\/td>\n | Table A.1 \u2013 EES reduction factor based on number of independent items <\/td>\n<\/tr>\n | ||||||
63<\/td>\n | A.2.5 Qualification of candidate equipment <\/td>\n<\/tr>\n | ||||||
64<\/td>\n | A.3 Test experience data A.3.1 General A.3.2 Characterization of test experience input motions A.3.3 Test experience spectra (TES) <\/td>\n<\/tr>\n | ||||||
65<\/td>\n | A.3.4 Characterization of reference equipment class <\/td>\n<\/tr>\n | ||||||
66<\/td>\n | A.3.5 Qualification of candidate equipment A.4 Special considerations A.4.1 Inherently rugged equipment <\/td>\n<\/tr>\n | ||||||
67<\/td>\n | A.4.2 Limitations A.5 Experience-based documentation A.5.1 General <\/td>\n<\/tr>\n | ||||||
68<\/td>\n | A.5.2 Reference data A.5.3 Candidate equipment qualification <\/td>\n<\/tr>\n | ||||||
69<\/td>\n | Annex B (informative) Measurement of zero period acceleration <\/td>\n<\/tr>\n | ||||||
70<\/td>\n | Annex C (informative) Frequency content and stationarity <\/td>\n<\/tr>\n | ||||||
71<\/td>\n | Annex D (informative) Fragility testing D.1 General D.2 Excitation motion <\/td>\n<\/tr>\n | ||||||
72<\/td>\n | D.3 Application of results D.4 Other considerations <\/td>\n<\/tr>\n | ||||||
74<\/td>\n | Annex E (informative) Test duration and number of cycles <\/td>\n<\/tr>\n | ||||||
75<\/td>\n | Figure E.1 \u2013 Fractional cycles to obtain one equipment maximum peak cycle <\/td>\n<\/tr>\n | ||||||
76<\/td>\n | Figure E.2 \u2013 Equivalent peak-stress cycles induced by stationary random motion Figure E.3 \u2013 Equivalent peak-stress cycles inducedby stationary random motion to 20\u00a0Hz <\/td>\n<\/tr>\n | ||||||
78<\/td>\n | Annex F (informative) Statistically independent motions <\/td>\n<\/tr>\n | ||||||
79<\/td>\n | Annex G (informative) Seismic qualification illustrative flowcharts G.1 General G.2 Establishment of seismic conditions and acceptance criteria G.3 Qualification by testing G.4 Qualification by analysis G.5 Qualification by combination of analysis and testing <\/td>\n<\/tr>\n | ||||||
80<\/td>\n | Figure G.1 \u2013 Seismic qualification flowchart <\/td>\n<\/tr>\n | ||||||
81<\/td>\n | Figure G.2 \u2013 Seismic qualification test flowchart <\/td>\n<\/tr>\n | ||||||
82<\/td>\n | Figure G.3 \u2013 Seismic qualification analysis flowchart <\/td>\n<\/tr>\n | ||||||
83<\/td>\n | Figure G.4 \u2013 Seismic qualification analysis and test flowchart <\/td>\n<\/tr>\n | ||||||
84<\/td>\n | Bibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" IEEE\/IEC International Standard – Nuclear facilities – Equipment important to safety – Seismic qualification<\/b><\/p>\n |