{"id":376447,"date":"2024-10-20T02:48:10","date_gmt":"2024-10-20T02:48:10","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bs-en-13445-32021-tc\/"},"modified":"2024-10-26T04:57:07","modified_gmt":"2024-10-26T04:57:07","slug":"bs-en-13445-32021-tc","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bs-en-13445-32021-tc\/","title":{"rendered":"BS EN 13445-3:2021 – TC"},"content":{"rendered":"
This Part of this document specifies requirements for the design of unfired pressure vessels covered by EN 13445-1:2019 and constructed of steels in accordance with EN 13445-2:2019. EN 13445-5:2019, Annex C specifies requirements for the design of access and inspection openings, closing mechanisms and special locking elements. NOTE This Part applies to design of vessels before putting into service. It may be used for in service calculation or analysis subject to appropriate adjustment.<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
1<\/td>\n | compares BS EN 13445-3:2021 <\/td>\n<\/tr>\n | ||||||
2<\/td>\n | TRACKED CHANGES Text example 1 \u2014 indicates added text (in green) <\/td>\n<\/tr>\n | ||||||
81<\/td>\n | 8.5.3.8.2 For a flat bar stiffener <\/td>\n<\/tr>\n | ||||||
84<\/td>\n | 8.6 Conical shell 8.6.1 General 8.6.2 Additional notation specific to cones <\/td>\n<\/tr>\n | ||||||
85<\/td>\n | 8.6.3 Interstiffener collapse <\/td>\n<\/tr>\n | ||||||
86<\/td>\n | 8.6.4.1.2 Light stiffeners <\/td>\n<\/tr>\n | ||||||
88<\/td>\n | 8.6.4.2 Varying shell thickness, stiffener size or spacing <\/td>\n<\/tr>\n | ||||||
89<\/td>\n | 8.6.5 Cone-cylinder intersections <\/td>\n<\/tr>\n | ||||||
92<\/td>\n | 8.7 Spherical shells 8.7.1 Design procedure <\/td>\n<\/tr>\n | ||||||
93<\/td>\n | 8.7.2 Permissible shape deviations 8.8 Vessel ends 8.8.1 Hemispherical ends 8.8.2 Torispherical ends 8.8.3 Ellipsoidal ends 9 Openings in shells 9.1 Purpose <\/td>\n<\/tr>\n | ||||||
94<\/td>\n | 9.2 Specific definitions 9.2.1 9.2.2 9.2.2.1 9.2.3 9.2.4 9.2.5 9.2.6 9.2.7 9.2.8 9.2.9 9.2.10 <\/td>\n<\/tr>\n | ||||||
95<\/td>\n | 9.2.11 9.2.12 9.3 Specific symbols and abbreviations 9.3.1 Subscripts <\/td>\n<\/tr>\n | ||||||
98<\/td>\n | 9.4 General <\/td>\n<\/tr>\n | ||||||
99<\/td>\n | 9.4.4 Elliptical or obround openings 9.4.4.1 Elliptical or obround openings reinforced by increased shell wall thickness, reinforcing plate or reinforcing ring (see 9.4.1 a), b) or c) ) 9.4.4.2 Openings reinforced by elliptical or obround nozzles normal to the shell wall (see 9.4.1.d) <\/td>\n<\/tr>\n | ||||||
100<\/td>\n | 9.4.5 Limitations on diameter 9.4.5.2 Openings with reinforcing plates 9.4.5.3 Openings in dished ends 9.4.5.4 Openings with nozzles 9.4.6 Effective thickness for nozzles <\/td>\n<\/tr>\n | ||||||
101<\/td>\n | 9.4.6.2 in creep applications (i.e.: when the calculation temperature is situated in the creep range) 9.4.6.3 in applications without creep and without fatigue assessment using Clause 17 (i.e.: when the calculation temperature is situated out of the creep range and the opening is not a critical area as defined in 17.2) 9.4.7 Nozzles to shell connections 9.4.8 Distance between a nozzle and a shell butt-weld <\/td>\n<\/tr>\n | ||||||
109<\/td>\n | 9.5 Isolated openings 9.5.1 Limitations <\/td>\n<\/tr>\n | ||||||
112<\/td>\n | 9.5.2.3 General requirements for reinforcement 9.5.2.3.2 Joint coefficient 9.5.2.3.2.2 Nozzle with a longitudinal weld <\/td>\n<\/tr>\n | ||||||
113<\/td>\n | 9.5.2.3.2.3 Reinforcing pad with a weld 9.5.2.3.3 Fillet weld areas for compensation 9.5.2.4 Pressure loaded cross-sectional areas Ap and stress loaded cross-sectional areas Af 9.5.2.4.2 Shells with openings without nozzle or reinforcing ring, with or without reinforcing pads <\/td>\n<\/tr>\n | ||||||
114<\/td>\n | If the closure of the opening is located inside the shell (as in Figure 9.4-2 ), then: For adequate reinforcement either EquationFormula (9.5-7) or (9.5-11), as appropriate, shall be satisfied. 9.5.2.4.2.2 On conical shell, longitudinal cross-section If the closure of the opening is located inside the ring, then: For adequate reinforcement either EquationFormula (9.5-7) or (9.5-11), as appropriate, shall be satisfied. <\/td>\n<\/tr>\n | ||||||
115<\/td>\n | 9.5.2.4.2.3 On spherical shell, dished end, cylindrical and conical shell, transverse section 9.5.2.4.3 Shells with openings without nozzle, reinforced by reinforcing rings <\/td>\n<\/tr>\n | ||||||
119<\/td>\n | 9.5.2.4.4.2 Extruded nozzles 9.5.2.4.4.3 Nozzle in cylindrical shell, longitudinal cross-section <\/td>\n<\/tr>\n | ||||||
120<\/td>\n | 9.5.2.4.4.4 Nozzle in conical shell, longitudinal cross-section 9.5.2.4.4.5 Nozzle in spherical shell, dished end, cylindrical and conical shell, transverse section <\/td>\n<\/tr>\n | ||||||
121<\/td>\n | 9.5.2.4.5 Nozzles oblique to the shell, with or without reinforcing pads 9.5.2.4.5.1 General 9.5.2.4.5.2 General for cylindrical and conical shells <\/td>\n<\/tr>\n | ||||||
122<\/td>\n | 9.5.2.4.5.3 Oblique nozzle in cylindrical shell, longitudinal cross-section 9.5.2.4.5.4 Oblique nozzle in conical shell, longitudinal cross-section 9.5.2.4.5.5 Oblique nozzle in cylindrical and conical shell, transverse section <\/td>\n<\/tr>\n | ||||||
123<\/td>\n | 9.5.2.4.5.6 General for oblique nozzles in spherical shells and dished ends <\/td>\n<\/tr>\n | ||||||
127<\/td>\n | 9.6 Multiple openings 9.6.1 Adjacent openings 9.6.2 Conditions under which a ligament check is not required 9.6.3 Ligament check of adjacent openings <\/td>\n<\/tr>\n | ||||||
128<\/td>\n | 9.6.3.2 Openings in cylindrical and conical shells <\/td>\n<\/tr>\n | ||||||
129<\/td>\n | 9.6.3.3 Openings in spherical shells and dished ends 9.6.3.4 Adjacent openings in regular hole pattern <\/td>\n<\/tr>\n | ||||||
130<\/td>\n | 9.6.4 Overall check of adjacent openings <\/td>\n<\/tr>\n | ||||||
137<\/td>\n | 9.7 Openings close to a shell discontinuity 9.7.2 Rules regarding wmin <\/td>\n<\/tr>\n | ||||||
138<\/td>\n | 9.7.2.3 Openings in domed and bolted ends 9.7.2.4 Openings in elliptical and torispherical ends 9.7.2.5 Openings in hemispherical ends 9.7.3 Rules regarding wp <\/td>\n<\/tr>\n | ||||||
144<\/td>\n | 10 Flat ends 10.1 Purpose <\/td>\n<\/tr>\n | ||||||
145<\/td>\n | 10.2 Specific definitions 10.2.1 10.2.2 10.2.3 10.2.4 10.3 Specific symbols and abbreviations <\/td>\n<\/tr>\n | ||||||
147<\/td>\n | 10.4 Unpierced circular flat ends welded to cylindrical shells 10.4.1 General 10.4.2 Limitations <\/td>\n<\/tr>\n | ||||||
148<\/td>\n | 10.4.3 Flat ends with a hub <\/td>\n<\/tr>\n | ||||||
150<\/td>\n | 10.4.5 Flat ends with a relief groove <\/td>\n<\/tr>\n | ||||||
152<\/td>\n | Figure 10.4-5 \u2014 Values of coefficient C2 <\/td>\n<\/tr>\n | ||||||
154<\/td>\n | 10.5 Unpierced bolted circular flat ends 10.5.1 General 10.5.2 Flat end with a narrow-face gasket <\/td>\n<\/tr>\n | ||||||
156<\/td>\n | 10.5.4 Flat ends with unequally spaced bolts 10.6 Pierced circular flat ends 10.6.1 General <\/td>\n<\/tr>\n | ||||||
157<\/td>\n | 10.6.2 Flat end thickness <\/td>\n<\/tr>\n | ||||||
161<\/td>\n | 10.7 Flat ends of non-circular or annular shape 10.7.1 General 10.7.2 Unpierced rectangular, elliptical or obround flat ends <\/td>\n<\/tr>\n | ||||||
162<\/td>\n | 10.7.3 Unpierced annular plates 10.7.4 Reinforcement of openings in rectangular, elliptical or obround flat ends or annular plates Figure 10.7-1 \u2014 Shape factor C3 for welded non-circular flat ends <\/td>\n<\/tr>\n | ||||||
163<\/td>\n | Figure 10.7-2 \u2014 Shape factor C3 for bolted rectangular flat end with full-face gasket <\/td>\n<\/tr>\n | ||||||
165<\/td>\n | 11 Flanges 11.1 Purpose 11.2 Specific definitions 11.2.1 11.2.2 11.2.3 11.2.4 11.2.5 11.2.6 11.2.7 <\/td>\n<\/tr>\n | ||||||
166<\/td>\n | 11.3 Specific symbols and abbreviations <\/td>\n<\/tr>\n | ||||||
168<\/td>\n | 11.4 General 11.4.1 Introduction 11.4.2 Use of standard flanges without calculation <\/td>\n<\/tr>\n | ||||||
169<\/td>\n | 11.4.3 Bolting 11.4.3.2 Nuts <\/td>\n<\/tr>\n | ||||||
170<\/td>\n | 11.4.3.3 Threaded holes Table 11.4-1 \u2014 Gaskets for standard flanges <\/td>\n<\/tr>\n | ||||||
171<\/td>\n | 11.4.4 Flange construction 11.4.5 Machining 11.4.6 Gaskets <\/td>\n<\/tr>\n | ||||||
172<\/td>\n | 11.5 Narrow face gasketed flanges <\/td>\n<\/tr>\n | ||||||
174<\/td>\n | 11.5.2 Bolt loads and areas <\/td>\n<\/tr>\n | ||||||
175<\/td>\n | 11.5.3 Flange moments <\/td>\n<\/tr>\n | ||||||
177<\/td>\n | Figure 11.5-4 \u2014 Value of \u03b2v for ( = 0,3 (integral method factor) Figure 11.5-5 \u2014 Value of \u03b2v for ( = 0,3 (integral method factor) <\/td>\n<\/tr>\n | ||||||
180<\/td>\n | Figure 11.5-7 \u2014 Value of \u03b2FL for ( = 0,3 (loose hub flange factor) <\/td>\n<\/tr>\n | ||||||
184<\/td>\n | 11.5.4.2 Stress limits 11.5.5 Narrow face flanges subject to external pressure <\/td>\n<\/tr>\n | ||||||
185<\/td>\n | 11.5.6 Lap joints <\/td>\n<\/tr>\n | ||||||
186<\/td>\n | Figure 11.5-9 \u2014 Stepped loose flange 11.5.6.2 Stub flange 11.5.6.3 Loose flange <\/td>\n<\/tr>\n | ||||||
188<\/td>\n | 11.6 Full face flanges with soft ring type gaskets Figure .11.6-1 \u2014 Full face flange (soft gasket) <\/td>\n<\/tr>\n | ||||||
189<\/td>\n | 11.6.2 Bolt loads and areas <\/td>\n<\/tr>\n | ||||||
191<\/td>\n | 11.6.4 Full face flanges subject to external pressure 11.7 Seal welded flanges <\/td>\n<\/tr>\n | ||||||
192<\/td>\n | 11.8 Reverse narrow face flanges 11.8.1 Internal pressure <\/td>\n<\/tr>\n | ||||||
193<\/td>\n | Figures 11.8-1 \u2014 Reverse narrow face flange <\/td>\n<\/tr>\n | ||||||
195<\/td>\n | 11.8.2 External pressure 11.9 Reverse full face flanges 11.9.1 General 11.9.2 Design following method of 11.5 <\/td>\n<\/tr>\n | ||||||
196<\/td>\n | Figure 11.9-1 \u2014 Reverse full face flange design to 11.9.2 <\/td>\n<\/tr>\n | ||||||
197<\/td>\n | 11.9.3 Design following method of 11.6 <\/td>\n<\/tr>\n | ||||||
198<\/td>\n | 11.10 Full face flanges with metal to metal contact 11.10.1 General 11.10.2 Specific symbols and abbreviations <\/td>\n<\/tr>\n | ||||||
199<\/td>\n | Figure 11.10-1 \u2014 Flange with full face metal to metal contact and O-ring seal <\/td>\n<\/tr>\n | ||||||
200<\/td>\n | 12 Bolted domed ends 12.1 Purpose 12.2 Specific definitions 12.2.1 12.3 Specific symbols and abbreviations <\/td>\n<\/tr>\n | ||||||
201<\/td>\n | 12.4 General 12.5 Bolted domed ends with narrow face gaskets 12.5.1 Dome concave to pressure <\/td>\n<\/tr>\n | ||||||
202<\/td>\n | Figure 12-1 \u2014 Bolted domed end with narrow face gasket <\/td>\n<\/tr>\n | ||||||
203<\/td>\n | 12.5.2 Dome convex to pressure 12.6 Bolted domed ends with full face joints 12.6.1 Bolted domed ends with full face joints concave to pressure <\/td>\n<\/tr>\n | ||||||
204<\/td>\n | Figure 12-2 \u2014 Bolted domed end with full face gasket 13 Heat Exchanger Tubesheets 13.1 Purpose <\/td>\n<\/tr>\n | ||||||
205<\/td>\n | 13.2 Specific definitions 13.2.1 13.2.2 13.2.3 13.2.4 13.2.5 13.3 Specific symbols and abbreviations <\/td>\n<\/tr>\n | ||||||
206<\/td>\n | Figure 13.1-1 \u2014 Three types of tubesheet heat exchangers <\/td>\n<\/tr>\n | ||||||
208<\/td>\n | 13.4 U-tube tubesheet heat exchangers 13.4.1 Scope Figure 13.4.1-1 \u2014 Typical U-tube tubesheet heat exchanger <\/td>\n<\/tr>\n | ||||||
210<\/td>\n | Figure 13.4.2-1 \u2014 Local reduction of thickness at tubesheet periphery <\/td>\n<\/tr>\n | ||||||
211<\/td>\n | 13.4.2.2 Tubes 13.4.2.3 Shell and channel 13.4.2.4 Loading 13.4.3 Symbols <\/td>\n<\/tr>\n | ||||||
213<\/td>\n | 13.4.4 Design considerations <\/td>\n<\/tr>\n | ||||||
214<\/td>\n | 13.4.4.2 Design conditions 13.4.4.3 Determination of intermediate coefficients <\/td>\n<\/tr>\n | ||||||
215<\/td>\n | Table 13.4.4-1 \u2015 Coefficients for integral shell and\/or channel <\/td>\n<\/tr>\n | ||||||
218<\/td>\n | 13.4.6 Design of shell and channel at their junction with the tubesheet 13.4.6.1 Determination of stresses in shell (configurations a, b, c) <\/td>\n<\/tr>\n | ||||||
220<\/td>\n | 13.4.7 Treatment of configurations with a full face gasket Figure 13.4.7-1 \u2014 Tubesheet extended as a flange with a full face gasket (Configurations b’, d’, e’) <\/td>\n<\/tr>\n | ||||||
221<\/td>\n | Figure 13.4.7-2 \u2014 Various types of configuration d’ 13.4.7.3 Design rule 13.5 Fixed tubesheet heat exchangers 13.5.1 Scope <\/td>\n<\/tr>\n | ||||||
222<\/td>\n | Figure 13.5.1-1 \u2014 Typical fixed tubesheet heat exchanger <\/td>\n<\/tr>\n | ||||||
224<\/td>\n | Figure 13.5.2-1 \u2013 Local reduction of thickness at tubesheet periphery <\/td>\n<\/tr>\n | ||||||
225<\/td>\n | 13.5.2.2 Tubes 13.5.2.3 Shell 13.5.2.4 Channel <\/td>\n<\/tr>\n | ||||||
226<\/td>\n | 13.5.2.5 Loading 13.5.3 Symbols <\/td>\n<\/tr>\n | ||||||
228<\/td>\n | 13.5.4 Design considerations <\/td>\n<\/tr>\n | ||||||
229<\/td>\n | 13.5.4.2 Design conditions 13.5.4.3 Determination of intermediate coefficients <\/td>\n<\/tr>\n | ||||||
231<\/td>\n | 13.5.4.4 Effective pressure Pe 13.5.5 Tubesheet design <\/td>\n<\/tr>\n | ||||||
232<\/td>\n | 13.5.5.2 Shear stress <\/td>\n<\/tr>\n | ||||||
233<\/td>\n | 13.5.6 Tube design 13.5.6.2 Equivalent stress <\/td>\n<\/tr>\n | ||||||
234<\/td>\n | 13.5.7.1.2 Equivalent stress <\/td>\n<\/tr>\n | ||||||
235<\/td>\n | 13.5.7.2 Shell design at its junction with the tubesheets 13.5.7.2.1 Axial bending stress 13.5.7.2.2 Equivalent stress 13.5.8 Channel design at its junction with the tubesheet 13.5.8.1 Axial membrane stress <\/td>\n<\/tr>\n | ||||||
236<\/td>\n | 13.5.8.2 Axial bending stress 13.5.8.3 Equivalent stress 13.5.9 Shell with different thickness or different material adjacent to the tubesheet 13.5.9.2 Conditions of applicability <\/td>\n<\/tr>\n | ||||||
237<\/td>\n | Figure 13.5.9-1 \u2014 Shell with increased thickness adjacent to the tubesheets 13.5.9.4 Design calculations <\/td>\n<\/tr>\n | ||||||
238<\/td>\n | 13.5.10 Treatment of configurations with a full face gasket Figure 13.5.10-1 \u2014 Tubesheet with a full face gasket (configurations b’, d’) 13.5.10.3 Design rule <\/td>\n<\/tr>\n | ||||||
249<\/td>\n | 13.6 Floating tubesheet heat exchangers 13.6.1 Scope <\/td>\n<\/tr>\n | ||||||
253<\/td>\n | Figure 13.6.2-1 \u2014 Local reduction of thickness at stationary tubesheet periphery <\/td>\n<\/tr>\n | ||||||
254<\/td>\n | Figure 13.6.2-2 \u2014 Local reduction of thickness at floating tubesheet periphery <\/td>\n<\/tr>\n | ||||||
255<\/td>\n | 13.6.2.2 Tubes 13.6.2.3 Shell 13.6.2.4 Channel <\/td>\n<\/tr>\n | ||||||
256<\/td>\n | 13.6.2.5 Loading 13.6.3 Symbols <\/td>\n<\/tr>\n | ||||||
257<\/td>\n | Subscripts: <\/td>\n<\/tr>\n | ||||||
258<\/td>\n | 13.6.4 Design considerations 13.6.4.2 Design conditions <\/td>\n<\/tr>\n | ||||||
259<\/td>\n | 13.6.4.3 Determination of intermediate factors <\/td>\n<\/tr>\n | ||||||
260<\/td>\n | 13.6.4.4 Effective pressure Pe <\/td>\n<\/tr>\n | ||||||
261<\/td>\n | 13.6.5 Tubesheet design 13.6.5.2 Shear stress <\/td>\n<\/tr>\n | ||||||
262<\/td>\n | 13.6.6 Tube design 13.6.6.2 Equivalent stress <\/td>\n<\/tr>\n | ||||||
263<\/td>\n | 13.6.7.1 Axial membrane stress 13.6.7.2 Axial bending stress 13.6.7.3 Equivalent stress 13.6.8 Channel design at its junction with the stationary tubesheet 13.6.8.1 Axial membrane stress <\/td>\n<\/tr>\n | ||||||
264<\/td>\n | 13.6.8.2 Axial bending stress 13.6.8.3 Equivalent stress 13.6.9 Treatment of configurations with a full face gasket Figure 13.6.9-1 \u2014 Tubesheet with full face gasket (Configurations b’, d’, e’,) <\/td>\n<\/tr>\n | ||||||
265<\/td>\n | 13.6.9.3 Design rule 13.6.10 Internally sealed floating tubesheet heat exchanger 13.6.10.2 Conditions of applicability 13.6.10.3 Tubesheet design <\/td>\n<\/tr>\n | ||||||
266<\/td>\n | 13.6.10.4 Tube design 13.7 Tubesheet characteristics 13.7.1 Purpose 13.7.2 Conditions of applicability <\/td>\n<\/tr>\n | ||||||
267<\/td>\n | 13.7.4 Design considerations Figure 13.7.3-1 \u2014 Tubesheet layout Figure 13.7.3-2 \u2014 Definition of hg <\/td>\n<\/tr>\n | ||||||
269<\/td>\n | Figure 13.7.3-5 \u2014 Determination of area S 13.7.6 Determination of the basic ligament efficiency ( for shear 13.7.7 Determination of the effective ligament efficiency ( * for bending <\/td>\n<\/tr>\n | ||||||
270<\/td>\n | 13.7.8 Determination of the effective elastic constants E * and ( * 13.7.9 Determination of the effective bending rigidity of the tubesheet D * <\/td>\n<\/tr>\n | ||||||
271<\/td>\n | Figure 13.7.8-1 \u2014 Curves for the determination of E * \/ E and ( * <\/td>\n<\/tr>\n | ||||||
272<\/td>\n | Figure 13.7.8-2 \u2014 Curves for the determination of E * \/E and ( * (square pattern) <\/td>\n<\/tr>\n | ||||||
273<\/td>\n | 13.8 Maximum permissible tube to tubesheet joint stress 13.8.1 Purpose 13.8.2 Symbols 13.8.3 Determination of maximum permissible tube-to-tubesheet joint stress <\/td>\n<\/tr>\n | ||||||
274<\/td>\n | 13.9 Maximum permissible longitudinal compressive stress for tubes 13.9.1 Purpose 13.9.2 Symbols 13.9.3 Determination of maximum permissible buckling stress <\/td>\n<\/tr>\n | ||||||
276<\/td>\n | Figure 13.9.3-1 \u2014 Definition of lengths l1 , l1 ‘, l2 , l2 ‘ , l3 <\/td>\n<\/tr>\n | ||||||
277<\/td>\n | 13.10 Design of tubesheet flange extension with a narrow face gasket 13.10.1 Purpose 13.10.2 Conditions of applicability Figure 13.10.1-1 \u2014 Tubesheet flange extension <\/td>\n<\/tr>\n | ||||||
278<\/td>\n | 13.10.4 Design considerations <\/td>\n<\/tr>\n | ||||||
280<\/td>\n | 13.11 Design of tubesheet flange extension with a full face gasket 13.11.1 Purpose 13.11.2 Conditions of applicability Figure 13.11.1-1 \u2014 Tubesheet flange extension <\/td>\n<\/tr>\n | ||||||
281<\/td>\n | 13.11.4 Design considerations <\/td>\n<\/tr>\n | ||||||
282<\/td>\n | Figure 13.11.4-1 \u2014 Analysis thickness of tubesheet flange extension 13.12 Special tube-to-tubesheet welded joints 13.12.1 Purpose <\/td>\n<\/tr>\n | ||||||
283<\/td>\n | 13.12.2 Additional symbols 13.12.3 Tubes welded to the outer tubesheet face with machined grooves Figure 13.12.3-1 \u2014 Tube welded to the outer tubesheet face with machined grooves <\/td>\n<\/tr>\n | ||||||
284<\/td>\n | Figure 13.12.4-1 \u2014 Inserted tube welded to the inner tubesheet face having machined grooves Figure 13.12.5-1 \u2014 Partially inserted tubes welded to the inner tubesheet face <\/td>\n<\/tr>\n | ||||||
285<\/td>\n | Figure 13.12.6-1 \u2014 Tube butt welded to the inner tubesheet face with hub 13.12.7 Tubes butt welded to the inner tubesheet face with machined grooves <\/td>\n<\/tr>\n | ||||||
286<\/td>\n | Figure 13.12.7-1 \u2014 Tubes butt welded to the inner tubesheet face with machined groove 14 Expansion bellows 14.1 Purpose 14.2 Specific definitions 14.2.1 Expansion bellows 14.2.2 Convolution <\/td>\n<\/tr>\n | ||||||
287<\/td>\n | 14.2.3 End tangents 14.2.4 Collar 14.2.5 Reinforcing and equalizing rings <\/td>\n<\/tr>\n | ||||||
288<\/td>\n | 14.3 Specific symbols and abbreviations <\/td>\n<\/tr>\n | ||||||
290<\/td>\n | 14.4 Conditions of applicability 14.4.1 Geometry 14.4.2 Loading <\/td>\n<\/tr>\n | ||||||
291<\/td>\n | 14.4.3 Temperature 14.4.4 Materials 14.4.5 Welding seams <\/td>\n<\/tr>\n | ||||||
292<\/td>\n | Table 14.4.5-1 \u2014 Typical bellows attachment welds <\/td>\n<\/tr>\n | ||||||
293<\/td>\n | 14.5 U-shaped unreinforced bellows 14.5.1 General Figure 14.5.1-1 \u2014 U-shaped unreinforced bellows <\/td>\n<\/tr>\n | ||||||
611<\/td>\n | Annex A Design requirements for pressure bearing welds <\/td>\n<\/tr>\n | ||||||
632<\/td>\n | Table A-8 \u2014 Nozzles <\/td>\n<\/tr>\n | ||||||
635<\/td>\n | Annex B Design by Analysis \u2013 Direct Route B.1 Introduction B.1.1 General B.1.2 Purpose B.1.3 Special requirements B.1.4 Creep design <\/td>\n<\/tr>\n | ||||||
636<\/td>\n | B.2 Specific definitions B.2.1 B.2.2 B.2.3 B.2.4 B.2.5 <\/td>\n<\/tr>\n | ||||||
637<\/td>\n | B.2.6 B.2.7 B.2.8 B.2.9 B.2.10 B.2.11 B.2.12 B.2.13 B.2.14 B.2.15 <\/td>\n<\/tr>\n | ||||||
638<\/td>\n | B.2.16 B.2.17 B.2.18 B.2.19 B.3 Specific symbols and abbreviations B.3.1 Subscripts <\/td>\n<\/tr>\n | ||||||
639<\/td>\n | B.3.2 Symbols B.4 Failure modes and limit states <\/td>\n<\/tr>\n | ||||||
641<\/td>\n | B.5 Methodology B.5.1 General, design checks B.5.1.1 General B.5.1.2 Design checks for calculation temperatures below the creep range B.5.1.3 Design checks for calculation temperatures in the creep range <\/td>\n<\/tr>\n | ||||||
642<\/td>\n | B.5.2 Procedure B.6 Actions B.6.1 Classification <\/td>\n<\/tr>\n | ||||||
643<\/td>\n | B.6.2 Characteristic values and characteristic functions of actions Table B.6-1 \u2014 Characteristic values for different types of action <\/td>\n<\/tr>\n | ||||||
644<\/td>\n | Figure B.6-1 \u2014 Typical plot of coincident temperatures and pressures <\/td>\n<\/tr>\n | ||||||
645<\/td>\n | B.6.3 Design values and design functions of actions B.7 Design models B.7.1 General <\/td>\n<\/tr>\n | ||||||
646<\/td>\n | B.7.2 Geometry B.7.3 Clad components B.7.4 Constitutive laws <\/td>\n<\/tr>\n | ||||||
647<\/td>\n | B.7.5 Material parameters B.7.5.1 Material strength parameters B.7.5.1.2 Long-term characteristic values B.7.5.2 Other material parameters <\/td>\n<\/tr>\n | ||||||
648<\/td>\n | B.7.6 Structural strain B.8 Non-creep Design checks B.8.1 General B.8.2 Gross Plastic Deformation (GPD) B.8.2.1 Principle <\/td>\n<\/tr>\n | ||||||
649<\/td>\n | B.8.2.2 Application rule: Lower bound limit approach B.8.2.3 Design checks for normal operating load cases Table B.8-1 \u2014 Partial safety factors for actions and normal operating load cases <\/td>\n<\/tr>\n | ||||||
651<\/td>\n | B.8.2.4 Design checks for testing load cases Table B.8-3 \u2015 Partial safety factors for actions and testing load cases Table B.8-4 \u2015 RM and \u03b3R for testing load cases <\/td>\n<\/tr>\n | ||||||
652<\/td>\n | B.8.3 Progressive Plastic Deformation (PD) B.8.3.1 Principle B.8.3.2 Application rule 1: Technical adaptation B.8.3.3 Application rule 2: Shakedown (SD) B.8.3.4 Application rule 3: Technical Shakedown <\/td>\n<\/tr>\n | ||||||
653<\/td>\n | B.8.3.5 Application rule 4: Technical shakedown for mechanical actions B.8.3.6 Design checks <\/td>\n<\/tr>\n | ||||||
654<\/td>\n | B.8.4 Instability (I) B.8.4.1 Principle B.8.4.2 Application rule 1: Experimental results B.8.4.3 Application rule 2: Clause 8 (for pressure action) B.8.4.4 Design checks for normal operating load cases <\/td>\n<\/tr>\n | ||||||
655<\/td>\n | B.8.4.5 Design checks for testing load cases B.8.5 Cyclic Fatigue failure (F) B.8.5.1 Principle B.8.5.2 Application rule B.8.5.3 Particular requirements B.8.6 Static equilibrium (SE) B.8.6.1 Principle B.8.6.2 Design checks <\/td>\n<\/tr>\n | ||||||
656<\/td>\n | B.9 Creep design checks B.9.1 General B.9.2 Welded joints <\/td>\n<\/tr>\n | ||||||
657<\/td>\n | B.9.3 Material creep strength parameters B.9.4 Creep Rupture (CR) B.9.4.1 Principle B.9.4.2 Application rule: Lower bound limit approach B.9.4.3 Design Checks <\/td>\n<\/tr>\n | ||||||
658<\/td>\n | Table B.9-1 \u2014 Partial safety factors for actions for CR load cases <\/td>\n<\/tr>\n | ||||||
659<\/td>\n | B.9.5 Excessive Creep Strain (ECS) B.9.5.1 Principle B.9.5.2 Equivalent creep strain B.9.5.3 Application Rule 1: Long creep periods (life fraction rule) B.9.5.3.2 Determination of the creep design temperature <\/td>\n<\/tr>\n | ||||||
660<\/td>\n | B.9.5.3.3 Determination of the reference stress B.9.5.3.3.1 Determination of the elastic limit action B.9.5.3.3.2 Material strength parameters and partial safety factors B.9.5.3.3.3 Determination of the (strain limiting) limit action . B.9.5.3.3.4 Reference stress <\/td>\n<\/tr>\n | ||||||
661<\/td>\n | B.9.5.3.4 Determination of the weighted lifetime B.9.5.3.5 Creep damage indicator B.9.5.4 Application Rule 2: Long, interrupted creep periods <\/td>\n<\/tr>\n | ||||||
662<\/td>\n | B.9.5.4.2 Action cycles with negligible creep B.9.5.4.3 Action cycles without plastification B.9.5.5 Design checks B.9.6 Creep and cyclic fatigue (CFI) <\/td>\n<\/tr>\n | ||||||
663<\/td>\n | Annex C Design by analysis \u2014 Method based on stress categories C.1 Purpose <\/td>\n<\/tr>\n | ||||||
664<\/td>\n | C.2 Specific definitions C.2.1 C.2.2 C.2.3 <\/td>\n<\/tr>\n | ||||||
665<\/td>\n | C.2.4 C.2.5 C.3 Specific symbols and abbreviations <\/td>\n<\/tr>\n | ||||||
666<\/td>\n | C.4 Representative stresses C.4.1 Equivalent stress <\/td>\n<\/tr>\n | ||||||
667<\/td>\n | C.4.2 Equivalent stress range <\/td>\n<\/tr>\n | ||||||
668<\/td>\n | C.4.3 Total stress \u2013 elementary stresses C.4.4 Decomposition of stresses C.4.4.1 Supporting line segment C.4.4.2 Membrane stress C.4.4.3 Bending stress <\/td>\n<\/tr>\n | ||||||
669<\/td>\n | C.4.4.4 Linearised stress C.4.4.5 Nonlinearity stress <\/td>\n<\/tr>\n | ||||||
670<\/td>\n | Figure C-2 \u2014 Decomposition of an elementary stress <\/td>\n<\/tr>\n | ||||||
671<\/td>\n | Figure C-3 \u2014 Decomposition of the longitudinal stress on the particular case of a cylindrical shell subject to an external bending moment M C.4.5 Requirements relating to the methods for determining stresses C.4.5.1 Assumption of linear elasticity <\/td>\n<\/tr>\n | ||||||
672<\/td>\n | C.4.5.2 Selection of methods for determining stresses C.5 Classification of stresses <\/td>\n<\/tr>\n | ||||||
673<\/td>\n | Table C-2 \u2014 Classification of stresses in some typical cases <\/td>\n<\/tr>\n | ||||||
676<\/td>\n | C.6 Stress analysis procedure <\/td>\n<\/tr>\n | ||||||
677<\/td>\n | C.7 Non-creep assessment criteria C.7.1 General <\/td>\n<\/tr>\n | ||||||
678<\/td>\n | Table C-3 \u2014 Illustration of assessment criteria <\/td>\n<\/tr>\n | ||||||
679<\/td>\n | Table C-3 \u2014 Illustration of assessment criteria <\/td>\n<\/tr>\n | ||||||
680<\/td>\n | C.7.2 Limitation of equivalent primary stresses C.7.3 Limitation of equivalent stress ranges resulting from primary + secondary stresses C.7.4 Alternative to limitation of equivalent stresses and equivalent stress ranges <\/td>\n<\/tr>\n | ||||||
681<\/td>\n | C.7.5 Limitation of primary stresses in case of tri-axial state of stress C.7.6 Simplified elastic-plastic analysis C.7.7 Prevention of incremental collapse resulting from thermal ratcheting C.7.7.1 General <\/td>\n<\/tr>\n | ||||||
682<\/td>\n | C.7.7.2 Specific parameters C.7.7.3 Assessment criterion C.8.1 EquationsFormulae to be used <\/td>\n<\/tr>\n | ||||||
683<\/td>\n | C.8 Creep assessment criteria C.8.2 Assessment criteria for a single creep load case C.8.3 Assessment criteria for multiple creep load cases <\/td>\n<\/tr>\n | ||||||
685<\/td>\n | Annex D Verification of the shape of vessels subject to external pressure D.1 Purpose D.2 Specific definitions D.3 Specific symbols and abbreviations D.4 Methods of measurement D.5 Cylindrical and conical sections D.5.1 General D.5.2 Direct measurement <\/td>\n<\/tr>\n | ||||||
687<\/td>\n | D.5.3 Templates <\/td>\n<\/tr>\n | ||||||
688<\/td>\n | D.5.4 Chord gauge D.5.4.1 Method <\/td>\n<\/tr>\n | ||||||
690<\/td>\n | D.6 Spheres and spherical sections <\/td>\n<\/tr>\n | ||||||
693<\/td>\n | Annex E Procedure for calculating the departure from the true circle of cylinders and cones E.1 Purpose E.2 Specific definitions E.3 Specific symbols and abbreviations E.4 Method <\/td>\n<\/tr>\n | ||||||
696<\/td>\n | Annex F Allowable external pressure for vessels outside circularity tolerance F.1 Purpose F.2 Specific definitions F.3 Specific symbols and abbreviations F.4 Method <\/td>\n<\/tr>\n | ||||||
698<\/td>\n | Annex G Alternative design rules for flanges and gasketed flange connections G.1 Purpose G.2 Specific definitions G.2.1 <\/td>\n<\/tr>\n | ||||||
699<\/td>\n | G.2.2 G.2.3 G.2.4 G.2.5 G.2.6 G.2.7 G.2.8 G.2.9 G.2.10 G.2.11 G.2.12 G.3 Specific symbols and abbreviations G.3.1 Use of figures <\/td>\n<\/tr>\n | ||||||
700<\/td>\n | G.3.2 Subscripts and special marks G.3.2.1 Subscripts <\/td>\n<\/tr>\n | ||||||
701<\/td>\n | G.3.2.2 Special marks G.3.3 Symbols <\/td>\n<\/tr>\n | ||||||
706<\/td>\n | Figure G.3-1 \u2015 Applied loads and lever arms <\/td>\n<\/tr>\n | ||||||
714<\/td>\n | G.4 General G.4.1 Conditions of applicability G.4.1.1 Geometry G.4.1.2 Material characteristics G.4.1.3 Loads <\/td>\n<\/tr>\n | ||||||
715<\/td>\n | G.4.2G.4.1.4 Mechanical model <\/td>\n<\/tr>\n | ||||||
716<\/td>\n | G.5 Parameters G.5.1 Flange parameters G.5.1.1 General G.5.1.2 Flange ring G.5.1.2.2 Effective dimensions of flange ring <\/td>\n<\/tr>\n | ||||||
717<\/td>\n | G.5.1.3 Connected shell G.5.1.3.2 No hub G.5.1.3.3 Blank flange (no connected shell) G.5.1.4 Lever arms <\/td>\n<\/tr>\n | ||||||
718<\/td>\n | G.5.1.4.1 General G.5.1.5 Flexibility-related flange parameters <\/td>\n<\/tr>\n | ||||||
719<\/td>\n | G.5.1.5.1 Integral flange, stub or collar <\/td>\n<\/tr>\n | ||||||
720<\/td>\n | G.5.2 Bolt parameters G.5.2.1 Effective cross-section area of bolts G.5.2.2 Flexibility modulus of bolts G.5.3 Gasket parameters G.5.3.1 Theoretical width <\/td>\n<\/tr>\n | ||||||
721<\/td>\n | G.5.3.2 Effective width <\/td>\n<\/tr>\n | ||||||
722<\/td>\n | Table G.5-1 \u2015 Effective gasket geometry <\/td>\n<\/tr>\n | ||||||
723<\/td>\n | G.5.3.3 Axial flexibility modulus of gasket G.6 Forces G.6.1 General G.6.2 Loads G.6.2.1 Assembly condition (I = 0) G.6.2.2 Subsequent conditions (I = 1, 2, 3…) G.6.2.2.2 Additional external loads G.6.2.2.3 Thermal loads <\/td>\n<\/tr>\n | ||||||
724<\/td>\n | G.6.3 Compliance of the joint G.6.4 Minimum forces necessary for the gasket G.6.4.1 Assembly condition (I = 0) G.6.4.2 Subsequent conditions (I = 1, 2, 3…) G.6.5 Forces in assembly condition (I = 0) G.6.5.1 Required forces <\/td>\n<\/tr>\n | ||||||
725<\/td>\n | G.6.5.2 Accounting for bolt-load scatter at assembly <\/td>\n<\/tr>\n | ||||||
726<\/td>\n | G.6.6 Forces in subsequent conditions (I = 1, 2, 3…) <\/td>\n<\/tr>\n | ||||||
727<\/td>\n | G.7 Load limits G.7.1 General G.7.2 Bolts <\/td>\n<\/tr>\n | ||||||
728<\/td>\n | G.7.3 Gasket G.7.4 Integral flange, stub or collar <\/td>\n<\/tr>\n | ||||||
729<\/td>\n | Table G.7-1 \u2015 Determination of \u03a8Z <\/td>\n<\/tr>\n | ||||||
730<\/td>\n | G.7.5 Blank flange G.7.6 Loose flange with stub or collar <\/td>\n<\/tr>\n | ||||||
731<\/td>\n | G.8 Supplements to the method G.8.1 Requirement for limitation of non-uniformity of gasket stress <\/td>\n<\/tr>\n | ||||||
732<\/td>\n | G.8.2 Dimensions of standard metric bolts <\/td>\n<\/tr>\n | ||||||
733<\/td>\n | G.8.3 Scatter of bolting-up methods <\/td>\n<\/tr>\n | ||||||
734<\/td>\n | G.8.4 Assembly using a torque wrench <\/td>\n<\/tr>\n | ||||||
735<\/td>\n | G.8.5 Flange rotations G.8.5.1 General G.8.5.2 Use of flange rotation <\/td>\n<\/tr>\n | ||||||
736<\/td>\n | G.8.5.3 Calculation of flange rotations G.9 Gasket properties G.9.1 General G.9.2 Specific symbols and abbreviations <\/td>\n<\/tr>\n | ||||||
738<\/td>\n | G.9.3 Tables for gasket properties <\/td>\n<\/tr>\n | ||||||
745<\/td>\n | G.10 Bibliography <\/td>\n<\/tr>\n | ||||||
746<\/td>\n | Annex GA Alternative design rules for flanges and gasketed flange connections GA.1 Purpose GA.2 Specific definitions <\/td>\n<\/tr>\n | ||||||
747<\/td>\n | GA.3 Specific symbols and abbreviations <\/td>\n<\/tr>\n | ||||||
765<\/td>\n | GA.5 Parameters <\/td>\n<\/tr>\n | ||||||
774<\/td>\n | GA.6 Forces <\/td>\n<\/tr>\n | ||||||
779<\/td>\n | GA.7 Load limits <\/td>\n<\/tr>\n | ||||||
786<\/td>\n | GA.8 Supplements to the method <\/td>\n<\/tr>\n | ||||||
789<\/td>\n | GA.9 Gasket properties <\/td>\n<\/tr>\n | ||||||
804<\/td>\n | GA.10 Bibliography <\/td>\n<\/tr>\n | ||||||
805<\/td>\n | Annex H Gasket factors m and y <\/td>\n<\/tr>\n | ||||||
808<\/td>\n | Annex I Additional information on heat exchanger tubesheet design I.1 Loading cases for fixed tubesheet heat exchangers I.1.1 Purpose I.1.2 Specific definitions I.1.3 Specific symbols I.1.4 General procedure <\/td>\n<\/tr>\n | ||||||
809<\/td>\n | I.1.5 Simplified procedure for normal operating conditions <\/td>\n<\/tr>\n | ||||||
810<\/td>\n | Table I.1.5-1 \u2014 Enveloping loading conditions I.2 Calculation of floating tubesheet heat exchanger using 13.5 I.2.1 Purpose I.2.2 2.2 Specific definitions I.2.3 Specific symbols I.2.4 Design method <\/td>\n<\/tr>\n | ||||||
812<\/td>\n | Annex J Alternative method for the design of heat exchanger tubesheets J.1 Purpose J.2 Specific definitions J.2.1 J.2.2 J.3 Specific symbols and abbreviations J.3.1 General <\/td>\n<\/tr>\n | ||||||
816<\/td>\n | J.3.2 Subscripts <\/td>\n<\/tr>\n | ||||||
822<\/td>\n | J.4 General J.4.1 Conditions of applicabilityScope J.4.1.1 Geometry and materials <\/td>\n<\/tr>\n | ||||||
823<\/td>\n | J.4.1.2 Loads <\/td>\n<\/tr>\n | ||||||
824<\/td>\n | J.4.2 Mechanical model <\/td>\n<\/tr>\n | ||||||
825<\/td>\n | J.4.3 Calculation method J.4.3.1 Required calculation checks <\/td>\n<\/tr>\n | ||||||
826<\/td>\n | J.4.3.2 Load cases to be calculatedconsidered <\/td>\n<\/tr>\n | ||||||
827<\/td>\n | J.4.3.3 Working with Application of the method J.4.3.3.2 Main conclusions J.5 Parameters for all types J.5.1 Diameters and widths J.5.1.1 Outside diameter d1 of tubed regionarea <\/td>\n<\/tr>\n | ||||||
828<\/td>\n | J.5.1.1.2 Maximum diameter d1(max) J.5.1.1.3 Minimum diameter d 1 ( m in ) J.5.1.1.3.1 Defining trapezoidal areas J.5.1.1.3.2 Determination of the minimum perforated tubesheet area AR(min) <\/td>\n<\/tr>\n | ||||||
830<\/td>\n | Calculate AR(min) to include all perforated and un-perforated areas as follows: cg) Measurement of area: J.5.1.1.3.3 Calculation of the minimum diameter of the perforated tubesheet area Calculate d1(min) from AR(min) as follows: NOTE\u2003If d1(min) exceeds d1(max), the calculation is incorrect and should be checked. J.5.1.1.4 Calculation of the Averageaverage diameter of the perforated tubesheet area d1(av) Calculate d1(av) as follows: J.5.1.1.5 Calculation of the outside diameter of the perforated tubesheet area d1 Compare the calculated diameter difference and the allowable diameter tolerance as follows: If the following condition is met: In all following calculations, put If the condition EquationFormula (J.5.1-13) is not met, calculate M as follows: where is the integer belowless than or equal to the value of <\/td>\n<\/tr>\n | ||||||
831<\/td>\n | Make all subsequent calculations M times with values of d1 given by: <\/td>\n<\/tr>\n | ||||||
835<\/td>\n | J.5.2 Perforated tubesheet area of the tubesheet J.5.2.1 Effective tube holeshole diameter J.5.2.2 Parameters of equivalent weakened plate J.5.2.2 Perforated plate parameters <\/td>\n<\/tr>\n | ||||||
836<\/td>\n | J.6 Tubesheets unsupported by tubes J.6.1 General J.6.2 Active pressures J.6.3 GovernGoverning pressure and distribution parameter J.7 Tubesheets supported by straight tubes J.7.1 General and constant parameters J.7.1.1 Scope <\/td>\n<\/tr>\n | ||||||
837<\/td>\n | J.7.1.2 Relative areas in the tubed regionarea The difference between both is the relative cross-sectional area of the tubes in the tubed regionarea: J.7.1.3 Buckling length of tubes J.7.1.3 Tube buckling length <\/td>\n<\/tr>\n | ||||||
838<\/td>\n | Figure J.9 \u2015 Definition of tube regionunsupported lengths of tube spans lA, lB, lC, basically for buckling <\/td>\n<\/tr>\n | ||||||
839<\/td>\n | Table J.1 \u2014 Coefficients for determining buckling lengths <\/td>\n<\/tr>\n | ||||||
840<\/td>\n | J.7.2 Active direct pressures J.7.3 Tube support J.7.3.1 Allowable longitudinal stresses in the tubestube stress <\/td>\n<\/tr>\n | ||||||
841<\/td>\n | J.7.3.2 Calculated design stress for the tube-to-tubesheet connection <\/td>\n<\/tr>\n | ||||||
842<\/td>\n | J.7.3.3 Allowable axial forces per unit area unit of the tubebundletube bundle J.7.4 Reactive pressures J.7.5 Active resultant pressure J.7.5.1 General J.7.5.2 Immersed floating head (see Figure J.2) <\/td>\n<\/tr>\n | ||||||
843<\/td>\n | J.7.5.3 Externally sealed floating head (dK shown in Figure J.3) J.7.5.4 Internally sealed floating head (dK shown in Figure J.4) J.7.5.5 Fixed tubesheets with expansion bellows (dK shown in Figure J.5) J.7.5.6 Fixed tubesheets without expansion bellows (see Figure J.6) <\/td>\n<\/tr>\n | ||||||
844<\/td>\n | J.7.6 GovernGoverning pressure representing the resultant effective axial force J.7.6.1 Resultants of active and reactive axial forces per unit area unit in the tubebundletube bundle J.7.6.2 Force distribution parameter J.7.6.3 GovernGoverning pressure <\/td>\n<\/tr>\n | ||||||
845<\/td>\n | J.8 Edge bending moments J.8.1 General <\/td>\n<\/tr>\n | ||||||
846<\/td>\n | Figure J.10 \u2014 Both sides integral (no gasket) Figure J.11 \u2014 Both sides flanged (two gaskets) <\/td>\n<\/tr>\n | ||||||
847<\/td>\n | Figure J.12 \u2015 Channel flanged (one gasket) <\/td>\n<\/tr>\n | ||||||
848<\/td>\n | J.8.2 MB = active fluid pressure bending moment For all cases |\u03bbS| < 0,05 simple MB = 0 may be assumed. More precise: All edge configurations with bS > 0, \u03bbS > 0: J.8.2 Active bolt load bending moment MA J.8.3 MC = reactive bending moment from connected components Edge configuration per Figure J-10: Both sides integral (no gasket): Edge configuration per Figure J-11: Both sides flanged (two gaskets): Edge configuration per Figure J-12: Channel flanged (one gasket): Edge configuration per Figure J-13: Shell flanged (one gasket): <\/td>\n<\/tr>\n | ||||||
849<\/td>\n | J.8.3 Active fluid pressure bending moment MB J.8.4 MD = reactive bending moment limitation by the tubesheet For all edge configurations the same limitation is valid: NOTE\u2003If the whole tubesheet has the same constant thickness, then is valid eP,red = eP. J.8.4 Reactive bending moment from connected components MC <\/td>\n<\/tr>\n | ||||||
850<\/td>\n | J.8.5 Reactive bending moment limitation by the tubesheet MD J.8.6 Resultant optimum edge bending moment <\/td>\n<\/tr>\n | ||||||
851<\/td>\n | J.8.7 Pressure representing the moment J.9 Limit load conditions for all tubesheets J.9.1 Bending within the tubed regionarea J.9.2 Shear at the boundary of the tubed region J.9.2 Checks at boundary of the tubed area and at the tubesheet flanged extension <\/td>\n<\/tr>\n | ||||||
852<\/td>\n | J.9.3 Local loading on untubed regionsareas <\/td>\n<\/tr>\n | ||||||
853<\/td>\n | J.9.4 Additional effect of weight <\/td>\n<\/tr>\n | ||||||
854<\/td>\n | J.9.5 Interaction of different loadings J.10 Fatigue assessment for fixed tubesheet exchangers without expansion bellows J.10.1 Exemption forfrom fatigue analysis J.10.2 Simplified fatigue analysis <\/td>\n<\/tr>\n | ||||||
855<\/td>\n | J.10.3 Detailed fatigue analysis J.10.3.1 Parameters <\/td>\n<\/tr>\n | ||||||
856<\/td>\n | J.10.3.2 Forces and moments J.10.3.3 Stresses <\/td>\n<\/tr>\n | ||||||
857<\/td>\n | Figure J.14 \u2015 Values of Ke2 for different shell to tubesheet attachments <\/td>\n<\/tr>\n | ||||||
858<\/td>\n | J.10.3.5 Formulae to Figure J.15 <\/td>\n<\/tr>\n | ||||||
860<\/td>\n | Annex K Additional information on expansion bellows design K.1 Guidance for the design of expansion bellows K.1.1 General <\/td>\n<\/tr>\n | ||||||
861<\/td>\n | K.1.2 Type of bellows K.1.3 Multiply bellows K.1.4 Internal pressure capacity K.1.5 Fatigue life expectancy <\/td>\n<\/tr>\n | ||||||
862<\/td>\n | K.1.6 Squirm due to internal pressure Figure K.1-1 \u2014 Squirm K.1.7 Instability due to external pressure <\/td>\n<\/tr>\n | ||||||
863<\/td>\n | K.1.8 Bellows axial rigidity Figure K.1-2 \u2014 Axial rigidity K.1.9 Correlation testing <\/td>\n<\/tr>\n | ||||||
864<\/td>\n | K.2 Polynomial approximation for coefficient Cp, Cf, Cd K.2.1 Coefficient Cp Table K.2.1-1 \u2014 Polynomial coefficients \u03b1i for the determination of Cp when C1 \u2264 0,3 <\/td>\n<\/tr>\n | ||||||
865<\/td>\n | Table K.2.1-2 \u2014 Polynomial coefficients \u03b1i for the determination of Cp when C1 > 0,3 K.2.2 Coefficient Cf Table K.2.2 \u2014 Polynomial coefficients \u03b2i for the determination of Cf <\/td>\n<\/tr>\n | ||||||
866<\/td>\n | K.2.3 Coefficient Cd Table K.2.3 \u2014 Polynomial coefficients \u03b3i for the determination of Cd K.3 Procedure for setting-up of a design fatigue curve <\/td>\n<\/tr>\n | ||||||
867<\/td>\n | Annex L Basis for design rules related to additional non-pressure loads L.1 Basis for calculation of line loads, lifting lugs, saddle supports and bracket supports <\/td>\n<\/tr>\n | ||||||
868<\/td>\n | L.2 Bibliography <\/td>\n<\/tr>\n | ||||||
869<\/td>\n | Annex M In service monitoring of vessels operating in fatigue or creep service M.1 Purpose M.2 Fatigue operation M.3 Measures to be taken when the calculated allowable fatigue lifetime has been reached and\/or cracks or crack-like defects are detected <\/td>\n<\/tr>\n | ||||||
870<\/td>\n | M.4 Operation in the creep range <\/td>\n<\/tr>\n | ||||||
871<\/td>\n | M.5 Measures to be taken when the calculated allowable creep lifetime has been reached <\/td>\n<\/tr>\n | ||||||
872<\/td>\n | M.6 Bibliography <\/td>\n<\/tr>\n | ||||||
873<\/td>\n | Annex N Bibliography to Clause 18 <\/td>\n<\/tr>\n | ||||||
874<\/td>\n | Annex O Physical properties of steels O.1 Purpose O.2 Symbols and abbreviations O.3 Definitions O.3.1 density O.3.2 Differential coefficient of linear thermal expansion <\/td>\n<\/tr>\n | ||||||
875<\/td>\n | O.3.3 Specific thermal capacity O.3.4 Thermal diffusivity O.3.5 Poisson’s ratio O.4 Physical properties of steels <\/td>\n<\/tr>\n | ||||||
876<\/td>\n | O.4.2 Polynomial coefficients <\/td>\n<\/tr>\n | ||||||
878<\/td>\n | O.4.3 Figures for physical properties of steels Figure O-1 \u2015 Modulus of elasticity for steel <\/td>\n<\/tr>\n | ||||||
881<\/td>\n | O.5 Bibliography <\/td>\n<\/tr>\n | ||||||
882<\/td>\n | Annex P Classification of weld details to be assessed using principal stresses <\/td>\n<\/tr>\n | ||||||
883<\/td>\n | Table P.1 \u2014 Seam welds <\/td>\n<\/tr>\n | ||||||
885<\/td>\n | Table P.1 \u2014 Seam welds <\/td>\n<\/tr>\n | ||||||
886<\/td>\n | Table P.1 \u2014 Seam welds (continued) <\/td>\n<\/tr>\n | ||||||
887<\/td>\n | Table P.2 \u2014 Shell to head or tubesheet <\/td>\n<\/tr>\n | ||||||
891<\/td>\n | Table P.3 \u2014 Branch connections <\/td>\n<\/tr>\n | ||||||
895<\/td>\n | Table P.4 \u2014 Jackets <\/td>\n<\/tr>\n | ||||||
900<\/td>\n | Table P.6 \u2014 Supports <\/td>\n<\/tr>\n | ||||||
906<\/td>\n | Annex Q Simplified procedure for the fatigue assessment of unwelded zones <\/td>\n<\/tr>\n | ||||||
907<\/td>\n | Annex R Coefficients for creep-rupture model equations for extrapolation of creep- rupture strength R.1 General <\/td>\n<\/tr>\n | ||||||
914<\/td>\n | R.2 Bibliography <\/td>\n<\/tr>\n | ||||||
915<\/td>\n | Annex S Extrapolation of the nominal design stress based on time-independent behaviour in the creep range S.1 General rule S.2 Results for EN 10028 materials <\/td>\n<\/tr>\n | ||||||
923<\/td>\n | Annex T Design by experimental methods T.1 Purpose T.2 Specific definitions burst test burst test with global deformation control fatigue test T.3 Specific symbols and abbreviations <\/td>\n<\/tr>\n | ||||||
924<\/td>\n | Table T.3-1 \u2014 Symbols <\/td>\n<\/tr>\n | ||||||
925<\/td>\n | T.4 General requirements T.4.1 Experimental methods without any calculation T.4.2 Experimental methods and other design methods T.4.3 Test programme T.4.4 Requirements for a vessel or part for burst test <\/td>\n<\/tr>\n | ||||||
926<\/td>\n | T.4.5 Requirements for a vessel or part for fatigue test T.4.6 Test medium T.4.7 Safety T.5 Methods T.5.1 Methods for pressure loading of predominantly non-cyclic nature T.5.1.1 General <\/td>\n<\/tr>\n | ||||||
927<\/td>\n | T.5.1.2 Method A T.5.1.3 Method B T.5.1.4 Method C T.5.2 Methods for pressure loading of predominantly cyclic nature and fatigue tests <\/td>\n<\/tr>\n | ||||||
928<\/td>\n | T.6 Test specifications T.6.1 Burst test of Method A T.6.1.1 Procedure <\/td>\n<\/tr>\n | ||||||
930<\/td>\n | T.6.1.2 Acceptance criteria T.6.1.3 Determination of the maximum allowable pressure <\/td>\n<\/tr>\n | ||||||
931<\/td>\n | T.6.1.4 Test report T.6.2 Burst test and global deformation control for Method B and Method C T.6.2.1 Procedure <\/td>\n<\/tr>\n | ||||||
932<\/td>\n | Figure T.6-1 \u2014 Curve of pressure versus volume variation, for determination of Plim T.6.2.3 Determination of the maximum allowable pressure T.6.2.4 Test report <\/td>\n<\/tr>\n | ||||||
933<\/td>\n | T.6.3 Fatigue test in conjunction with Methods B or C, design by formulae or design by analysis T.6.3.1 Test procedure T.6.3.2 Test factor <\/td>\n<\/tr>\n | ||||||
934<\/td>\n | Table T.6-1 \u2014 Values of the factor k T.6.3.4 Test report T.7 Duplicate or similar parts T.7.1 General T.7.2 Duplicate parts <\/td>\n<\/tr>\n | ||||||
935<\/td>\n | T.7.3 Similar parts T.7.3.1 General T.7.3.2 Determination of the maximum allowable pressure T.8 Bibliography <\/td>\n<\/tr>\n | ||||||
936<\/td>\n | Annex U Guidance on negligibility of additional thermal cycles in fatigue and ratcheting assessment U.1 Purpose U.2 Specific definitions U.3 Specific symbols and abbreviations U.4 General U.4.1 Guidance for metal temperature estimates <\/td>\n<\/tr>\n | ||||||
937<\/td>\n | U.4.2 Conditions in which thermal cycles may be neglected in fatigue assessment U.4.3 Conditions in which thermal cycles may be neglected in ratcheting assessment U.5 Thermal cycles acting not simultaneously to pressure cycles U.5.1 Fatigue assessment Table U-1 \u2014 Ranges of metal temperature difference \u2206Tdiff,0 (in C) which may reasonably be neglected for unlimited number of thermal cycles acting not simultaneously to pressure cycles <\/td>\n<\/tr>\n | ||||||
938<\/td>\n | U.5.2 Ratcheting assessment U.5.3 Ratcheting assessment for materials not included in EN standards <\/td>\n<\/tr>\n | ||||||
939<\/td>\n | U.6 Thermal cycles acting simultaneously to pressure cycles Table U-3 \u2014 Temperature ranges \u2206Tdiff,1 and \u2206Tdiff,2 (in C) to calculate the ranges of metal temperature difference which may reasonably be neglected for thermal cycles acting simultaneously to pressure cycles <\/td>\n<\/tr>\n | ||||||
944<\/td>\n | Annex V Consider a buffer for unknown nozzle loads \u2014 Opening design for unknown nozzle loads <\/td>\n<\/tr>\n | ||||||
945<\/td>\n | Annex Y History of EN 13445-3 Y.1 Differences between EN 13445-3:20092014 and EN 13445-3:20142021 Y.2 List of corrected pages of Issue 2 (2015-07) Y.3 List of corrected pages of Issue 3 (2016-07) Y.4 List of corrected pages of Issue 4 (2017-07) Y.5 List of corrected pages of Issue 5 (2018-07) <\/td>\n<\/tr>\n | ||||||
946<\/td>\n | Annex ZA Relationship between this European Standard and the essential requirements of Directive 2014\/68\/EU aimed to be covered Table ZA.1 \u2014 Correspondence between this European Standard and Directive 2014\/68\/EU <\/td>\n<\/tr>\n | ||||||
947<\/td>\n | Table ZA.1 \u2014 Correspondence between this European Standard and Directive 2014\/68\/EU <\/td>\n<\/tr>\n | ||||||
1094<\/td>\n | undefined <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" Tracked Changes. Unfired pressure vessels – Design<\/b><\/p>\n |