{"id":180161,"date":"2024-10-19T11:14:51","date_gmt":"2024-10-19T11:14:51","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/ashrae-aedgk-12zeroenergy-2018\/"},"modified":"2024-10-25T03:32:26","modified_gmt":"2024-10-25T03:32:26","slug":"ashrae-aedgk-12zeroenergy-2018","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/ashrae\/ashrae-aedgk-12zeroenergy-2018\/","title":{"rendered":"ASHRAE AEDGK 12ZeroEnergy 2018"},"content":{"rendered":"

The Advanced Energy Design Guide – Achieving Zero Energy series provides a cost effective approach to achieve advanced levels of energy savings. The four-color Guides offer contractors and designers the tools, including recommendations for practical products and off-the-shelf technology, needed for achieving Zero Energy which is defined as a building that, on an annual basis, draws from outside resources equal or less energy than it provides using on-site renewable energy sources. This Guide been developed through the collaboration of ASHRAE, the American Institute of Architects (AIA), the Illuminating Engineering Society (IES), and the U.S. Green Building Council (USGBC), with support from the Department of Energy (DOE), to help meet all of an owner’s energy performance requirements. In an effort to promote building energy efficiency, ASHRAE and its partners have made these Guides available for download (PDF) at no charge. For K-12 school buildings, and applies to all sizes and classifications (elementary, middle, high). Space types covered include administrative and office space, classrooms, hallways, restrooms, gymnasiums and multipurpose rooms, libraries, and food preparation and dining areas. The Guide establishes a set of energy performance goals for achieving zero energy. The goals are provided for all ASHRAE climate zones, in both site and source energy. Strategies on how to achieve these energy targets are provided throughout the guide.<\/p>\n

PDF Catalog<\/h4>\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
PDF Pages<\/th>\nPDF Title<\/th>\n<\/tr>\n
2<\/td>\nAdvanced Energy Design Guide for K\u201312 School Buildings\u2014Achieving Zero Energy <\/td>\n<\/tr>\n
3<\/td>\nPROJECT COMMITTEE
STEERING COMMITTEE <\/td>\n<\/tr>\n
6<\/td>\nContents <\/td>\n<\/tr>\n
10<\/td>\nSidebars, Case Studies, and Technical Examples <\/td>\n<\/tr>\n
12<\/td>\nAcknowledgments <\/td>\n<\/tr>\n
14<\/td>\nAbbreviations and Acronyms <\/td>\n<\/tr>\n
16<\/td>\nForeword: A Message to Administrators <\/td>\n<\/tr>\n
18<\/td>\nChapter 1: Introduction
WHY BUILD A ZERO ENERGY SCHOOL?
STUDENT LEARNING AND STUDENT SUCCESS
SOUND FISCAL MANAGEMENT <\/td>\n<\/tr>\n
19<\/td>\nENVIRONMENTAL STEWARDSHIP
ZERO ENERGY DEFINITION <\/td>\n<\/tr>\n
20<\/td>\nGOAL OF THIS GUIDE
SCOPE <\/td>\n<\/tr>\n
21<\/td>\nENERGY TARGETS AND BASELINE BUILDING <\/td>\n<\/tr>\n
22<\/td>\nHOW TO USE THIS GUIDE
Figure 1-1 Typical elementary school floor plan <\/td>\n<\/tr>\n
23<\/td>\nFigure 1-2 (a) Site EUI comparison by climate zone, (b) source EUI comparison by climate zone. <\/td>\n<\/tr>\n
24<\/td>\nREFERENCES AND RESOURCES <\/td>\n<\/tr>\n
26<\/td>\nCase Study\u2014Dearing Elementary School <\/td>\n<\/tr>\n
28<\/td>\nChapter 2: Rationale for Zero Energy
HIGH PERFORMANCE LERANING ENVIRONMENTS
INDOOR AIR QUALITY <\/td>\n<\/tr>\n
29<\/td>\nTHERMAL COMFORT
ACOUSTIC COMFORT
VISUAL COMFORT AND DAYLIGHTING <\/td>\n<\/tr>\n
30<\/td>\nLEARNING ENVIRONMENT
Figure 2-1 Dining commons at Discovery Elementary School <\/td>\n<\/tr>\n
31<\/td>\nFigure 2-2 Students in Solar Laboratory. <\/td>\n<\/tr>\n
32<\/td>\nLeading the Way Forward: Teaching and Learning with Zero Energy <\/td>\n<\/tr>\n
33<\/td>\nPRINCIPLES FOR SUCCESS
FUNDAMENTAL PRINCIPLES <\/td>\n<\/tr>\n
34<\/td>\nCREATING THE CULTURE <\/td>\n<\/tr>\n
35<\/td>\nDEVELOPING COLLABORATIVE SYNERGIES
STAKEHOLDER COLLABORATION <\/td>\n<\/tr>\n
36<\/td>\nREFERENCES AND RESOURCES <\/td>\n<\/tr>\n
38<\/td>\nCase Study\u2014Richard J. Lee Elementary School <\/td>\n<\/tr>\n
40<\/td>\nChapter 3: Zero Energy Schools: Keys to Success
BUILDING THE TEAM
IDENTIFY A CHAMPION
WRITE A COMPELLING REQUEST FOR PROPOSAL <\/td>\n<\/tr>\n
41<\/td>\nHIRE AN EXPERT A\/E TEAM
MATCH PROCUREMENT TO PERFORMANCE <\/td>\n<\/tr>\n
43<\/td>\nPROJECT PLANNING
BUDGETING AND PLANNING <\/td>\n<\/tr>\n
44<\/td>\nComparing Costs for Zero Energy Schools to Costs for Other Equivalent Schools <\/td>\n<\/tr>\n
46<\/td>\nSCHEDULING DESIGN AND CONSTRUCTION
SETTING PROJECT GOALS <\/td>\n<\/tr>\n
47<\/td>\nFigure 3-1 Integrated design process for a zero energy building. <\/td>\n<\/tr>\n
49<\/td>\nBasis of Design (BOD)
DEVELOPING ENERGY BUDGET AND KEY PERFORMANCE CRITERIA <\/td>\n<\/tr>\n
51<\/td>\nTable 3-1 Target EUI <\/td>\n<\/tr>\n
52<\/td>\nFigure 3-2 Climate zone map for U.S. states and counties. <\/td>\n<\/tr>\n
53<\/td>\nFigure 3-3 Energy synergies graph. <\/td>\n<\/tr>\n
54<\/td>\nFigure 3-4 Energy balance diagram. <\/td>\n<\/tr>\n
55<\/td>\nQUALITY ASSURANCE AND COMMISSIONING <\/td>\n<\/tr>\n
56<\/td>\nCOMMISSIONING DURING CONSTRUCTION <\/td>\n<\/tr>\n
57<\/td>\nMEASUREMENT AND VERIFICATION
POSTOCCUPANCY PERFORMANCE <\/td>\n<\/tr>\n
58<\/td>\nONGOING COMMISSIONING
REFERENCES AND RESOURCES <\/td>\n<\/tr>\n
60<\/td>\nCase Study\u2014Discovery Elementary School <\/td>\n<\/tr>\n
62<\/td>\nChapter 4: Building Performance Simulation
INTRODUCTION
SIMULATION TEAM <\/td>\n<\/tr>\n
63<\/td>\nSIMULATION TYPES <\/td>\n<\/tr>\n
64<\/td>\nSIMULATION PROCESS AND STRATEGIES
CLIMATE
FORM AND SHAPE <\/td>\n<\/tr>\n
65<\/td>\nFigure 4-1 (a) Annual temperature stress by month and (b) wind speed and direction. <\/td>\n<\/tr>\n
66<\/td>\nWINDOW-TO-WALL RATIO
SHADING
Figure 4-2 Varying geometries to analyze impact of form\/shape. <\/td>\n<\/tr>\n
67<\/td>\nENVELOPE
Figure 4-3 Solar analysis. <\/td>\n<\/tr>\n
68<\/td>\nUSER BEHAVIOR
EQUIPMENT SCHEDULES AND LOADS
Figure 4-4 Exterior wall insulation versus EUI. <\/td>\n<\/tr>\n
69<\/td>\nLIGHTING
NATURAL VENTILATION
INFILTRATION
DAYLIGHTING AUTONOMY AND GLARE ANALYSIS <\/td>\n<\/tr>\n
70<\/td>\nRAY TRACE ANALYSIS
HEATING AND COOLING LOADS
Figure 4-5 Spatial daylighting autonomy (sDA) analysis. <\/td>\n<\/tr>\n
71<\/td>\nEvaluating Daylighting Performance <\/td>\n<\/tr>\n
72<\/td>\nComparing Mechanical Systems <\/td>\n<\/tr>\n
73<\/td>\nMECHANICAL SYSTEMS COMPARISONS
REFERENCES AND RESOURCES <\/td>\n<\/tr>\n
74<\/td>\nCase Study\u2014Odyssey Elementary School <\/td>\n<\/tr>\n
76<\/td>\nCase Study\u2014Hollis Montessori School <\/td>\n<\/tr>\n
78<\/td>\nChapter 5: How-To Strategies
BUILDING AND SITE PLANNING
OVERVIEW <\/td>\n<\/tr>\n
79<\/td>\nTable 5-1 Summary of Strategies and Recommendations <\/td>\n<\/tr>\n
80<\/td>\nSITE DESIGN STRATEGIES <\/td>\n<\/tr>\n
81<\/td>\nBUILDING MASSING
Figure 5-1 (BP2) Site analysis plan\u2014Poquoson Elementary School. <\/td>\n<\/tr>\n
83<\/td>\nBUILDING ORIENTATION
Figure 5-2 (BP9) Solar pat illustration. <\/td>\n<\/tr>\n
84<\/td>\nBUILDING DESIGN STRATEGIES <\/td>\n<\/tr>\n
86<\/td>\nPLANNING FOR RENEWABLE ENERGY <\/td>\n<\/tr>\n
87<\/td>\nTable 5-2 (BP9) PV Area as Percent of Gross Floor Area <\/td>\n<\/tr>\n
90<\/td>\nREFERENCES AND RESOURCES
ENVELOPE
Figure 5-3 Heating and cooling loads by climate zone. <\/td>\n<\/tr>\n
91<\/td>\nAIR BARRIER SYSTEM
Figure 5-4 Continuous air barrier. <\/td>\n<\/tr>\n
92<\/td>\nTHERMAL MASS
ROOF CONSTRUCTION <\/td>\n<\/tr>\n
93<\/td>\nBUILDING INSULATION\u2014OPAQUE COMPONENTS
Table 5-3 (EN6) Envelope Construction Factors <\/td>\n<\/tr>\n
96<\/td>\nFigure 5-5 (EN14) Slab insulation. <\/td>\n<\/tr>\n
97<\/td>\nBUILDING INSULATION\u2014THERMAL BRIDGING
Table 5-4 Envelope Material Conductivity <\/td>\n<\/tr>\n
99<\/td>\nFigure 5-6 (EN20) Wall transition with insulation continous to foundation.
Figure 5-7 (EN20) Wall transition with insulation. <\/td>\n<\/tr>\n
100<\/td>\nFigure 5-8 (EN20) Wall transition where shelf angle carries brick above grade. <\/td>\n<\/tr>\n
101<\/td>\nFigure 5-9 (EN22) Cavity wall insulaiton. <\/td>\n<\/tr>\n
102<\/td>\nFigure 5-10 (EN23) Shelf angle installation. <\/td>\n<\/tr>\n
104<\/td>\nFigure 5-11 (EN29) Parapet insulation. <\/td>\n<\/tr>\n
105<\/td>\nFigure 5-12 (EN31) Through-wall scupper insulation.
Figure 5-13 (EN32) Plumbing vent insulation. <\/td>\n<\/tr>\n
106<\/td>\nOVERVIEW
Figure 5-14 (EN33) Roof drain insulation. <\/td>\n<\/tr>\n
107<\/td>\nBUILDING FENESTRATION <\/td>\n<\/tr>\n
110<\/td>\nMaintain Internal Surface Temperatures
Table 5-5 (EN46) Fenestration Criteria <\/td>\n<\/tr>\n
111<\/td>\nTable 5-6 (EN48) SHGC Multipliers for Permanent Projections <\/td>\n<\/tr>\n
112<\/td>\nFigure 5-15 (EN51) Top view of a window system to opaque wall connection.
Figure 5-16 (EN51) Exterior door insulation installation. <\/td>\n<\/tr>\n
114<\/td>\nREFERENCES AND RESOURCES <\/td>\n<\/tr>\n
115<\/td>\nDAYLIGHTING
OVERVIEW
DESIGN STRATEGIES <\/td>\n<\/tr>\n
116<\/td>\nFigure 5-17 Fenestration example. <\/td>\n<\/tr>\n
118<\/td>\nDynamic Daylight Metrics
Table 5-7 (DL3) Recommended Daylight Design Criteria <\/td>\n<\/tr>\n
119<\/td>\nFigure 5-18 (DL6) Fenestration ratios. <\/td>\n<\/tr>\n
120<\/td>\nTable 5-8 (DL6) Recommended Daylight Fenestration to Floor Area (DFA) Ratios <\/td>\n<\/tr>\n
122<\/td>\nFigure 5-19 (DL8) Fenestration shading examples. <\/td>\n<\/tr>\n
123<\/td>\nTable 5-9 (DL12) Minimum Interior Surface Reflectance <\/td>\n<\/tr>\n
124<\/td>\nCLASSROOM SIDELIGHTING
Figure 5-20 (DL14) Example classroom sidelighting strategies for both north and south orientations. <\/td>\n<\/tr>\n
125<\/td>\nFigure 5-21 (DL15) Louvers blocking direct beam radiation. <\/td>\n<\/tr>\n
126<\/td>\nFigure 5-22 (DL15) Fiber-filled glazing diffuses sunlight.
Figure 5-23 (DL15) Light shelf using blinds between panes of glazing. <\/td>\n<\/tr>\n
127<\/td>\nFigure 5-24 (DL15) Light redirection in a classroom. <\/td>\n<\/tr>\n
128<\/td>\nCLASSROOM SIDELIGHTING WITH TOPLIGHTING
GYMNASIUM\/MULTIPURPOSE ROOM LIGHTING
REFERENCES AND RESOURCES
Figure 5-25 (DL17) Sidelighting enhanced with toplighting or roof monitors. <\/td>\n<\/tr>\n
129<\/td>\nELECTRIC LIGHTING
OVERVIEW
LUMINAIRE STRATEGIES <\/td>\n<\/tr>\n
130<\/td>\nTable 5-10 (EL1) Recommendations for LED Luminaires <\/td>\n<\/tr>\n
131<\/td>\nDESIGN METRICS <\/td>\n<\/tr>\n
132<\/td>\nEvaluating Color Rendition and Quality
Figure 5-26 (EL3) Color temperature chart. <\/td>\n<\/tr>\n
133<\/td>\nDESIGN STRATEGIES
Figure 5-27 (EL4) MacAdam steps\u2014standard deviation color matching. <\/td>\n<\/tr>\n
135<\/td>\nFigure 5-28 (EL9) Example of scalloping patterns and dark ceilings. <\/td>\n<\/tr>\n
136<\/td>\nCONTROL STRATEGIES
Figure 5-29 (EL10) Example of asymmetric versus symmetric luminaire layouts. <\/td>\n<\/tr>\n
137<\/td>\nFigure 5-30 (EL10) Lighting as wayfinding. <\/td>\n<\/tr>\n
138<\/td>\nFIgure 5-31 (EL11) Measured versus percieved light. <\/td>\n<\/tr>\n
140<\/td>\nFIgure 5-32 (EL15) (Left) 0\u201310 V and (right) DALI wiring schemes. <\/td>\n<\/tr>\n
141<\/td>\nFigure 5-33 (EL16) Sensor study findings. <\/td>\n<\/tr>\n
143<\/td>\nSPACE SPECIFIC STRATEGIES
Table 5-11 Lighting Power Densities <\/td>\n<\/tr>\n
145<\/td>\nFigure 5-34 (EL23) Typical classroom ceiling layout. <\/td>\n<\/tr>\n
146<\/td>\nFigure 5-35 (EL24) Typical elementary school gymnasium\/multipurpose room layout. <\/td>\n<\/tr>\n
147<\/td>\nFigure 5-36 (EL25) Typical elementary school library layout. <\/td>\n<\/tr>\n
148<\/td>\nFigure 5-37 (EL26) (a) Corridor layout 1 and (b) corridor layout 2. <\/td>\n<\/tr>\n
150<\/td>\nEXTERIOR LIGHTING
Figure 5-38 (EL27) (a) Administrative offices layout 1 and (b) administrative offices layout 2. <\/td>\n<\/tr>\n
151<\/td>\nFigure 5-39 (EL28) BUG rating chart example. <\/td>\n<\/tr>\n
152<\/td>\nExterior Sports Field Lighting <\/td>\n<\/tr>\n
153<\/td>\nREFERENCES AND RESOURCES <\/td>\n<\/tr>\n
155<\/td>\nPLUG LOADS AND POWER DISTRIBUTION SYSTEMS
OVERVIEW
PLUG LOAD MANAGEMENT <\/td>\n<\/tr>\n
156<\/td>\nFigure 5-40 (PL2) Thermographic image of teacher’s desk. <\/td>\n<\/tr>\n
158<\/td>\nPOWER DISTRIBUTION SYSTEMS <\/td>\n<\/tr>\n
159<\/td>\nFigure 5-41 (PL7) Typical classroom wing power distribution. <\/td>\n<\/tr>\n
160<\/td>\nREFERENCES AND RESOURCES
KITCHEN EQUIPMENT
OVERVIEW <\/td>\n<\/tr>\n
161<\/td>\nEQUIPMENT AND DESIGN STRATEGIES <\/td>\n<\/tr>\n
163<\/td>\nTable 5-12 (KE3) Commercial Food Service Appliance ASTM Standard Test Methods
Table 5-13 (KE4) Convection Ovens <\/td>\n<\/tr>\n
164<\/td>\nTable 5-14 (KE4) Gas-Fired Steamers
Table 5-15 (KE4) Electric Steamers
Table 5-16 (KE4) Commercial Fryers <\/td>\n<\/tr>\n
165<\/td>\nTable 5-17 (KE4) Hot Food Holding Cabinets <\/td>\n<\/tr>\n
166<\/td>\nTable 5-18 (KE8) Pre-Rinse Spray Valve Specification <\/td>\n<\/tr>\n
167<\/td>\nTable 5-19 (KE8) Dishwasher Specification
Table 5-20 (KE9) Maximum Daily Energy Consumption Requirements (kWh\/day) <\/td>\n<\/tr>\n
168<\/td>\nWALK-IN COOLERS AND FREEZERS <\/td>\n<\/tr>\n
169<\/td>\nFigure 5-42 (KE11) Freezer slab edge details (a) with double curb at freezer box and (b) without curb. <\/td>\n<\/tr>\n
171<\/td>\nTable 5-21 (KE11) Freezer Box Floor Insulation Levels <\/td>\n<\/tr>\n
172<\/td>\nTable 5-22 (KE15) Minimum AWEF EPCA 202 Amendments
Table 5-23 (KE15) Strategies for Energy Reduction of Walk-Ins <\/td>\n<\/tr>\n
174<\/td>\nHEAT RECOVERY <\/td>\n<\/tr>\n
175<\/td>\nREFERENCES AND RESOURCES <\/td>\n<\/tr>\n
176<\/td>\nSERVICE WATER HEATING
OVERVIEW <\/td>\n<\/tr>\n
177<\/td>\nSYSTEM TYPES <\/td>\n<\/tr>\n
178<\/td>\nDESIGN STRATEGIES <\/td>\n<\/tr>\n
179<\/td>\nTable 5-24 (WH4) Gas Water Heater Performance
Table 5-25 (WH4) Electric Resistance Water Heater Performance
Table 5-26 (WH4) Heat Pump Performance Requirements <\/td>\n<\/tr>\n
180<\/td>\nTable 5-27 (WH6) Minimum Piping Insulation Thicknesses for SWH Systems <\/td>\n<\/tr>\n
182<\/td>\nREFERENCES AND RESOURCES
HVAC SYSTEMS AND EQUIPMENT
OVERVIEW
Figure 5-43 (WH8) Refrigerant superheat recovery tank piping for service hot-water preheat. <\/td>\n<\/tr>\n
183<\/td>\nGENERAL STRATEGIES <\/td>\n<\/tr>\n
184<\/td>\nCHILLED-\/HOT-WATER SYSTEM WITH SINGLE-ZONE AIR-HANDLING UNITS <\/td>\n<\/tr>\n
185<\/td>\nTable 5-28 9HV3, HV5, HV13) HVAC System Recommendations <\/td>\n<\/tr>\n
186<\/td>\nManvel Junior High School
AIR-SOURCE VARIABLE-REFRIGERANT-FLOW MULTISPLIT HEAT PUMP <\/td>\n<\/tr>\n
187<\/td>\nFigure 5-44 (HV7) Three-pipe heat recovery VRF system examples. <\/td>\n<\/tr>\n
188<\/td>\nGROUND-SOURCE HEAT PUMP <\/td>\n<\/tr>\n
189<\/td>\nFigure 5-45 (HV11) Geothermal field horizontal trenches. <\/td>\n<\/tr>\n
190<\/td>\nFigure 5-46 (HV11) GSHP vertical water loop illustration. <\/td>\n<\/tr>\n
191<\/td>\nDEDICATED OUTDOOR AIR SYSTEM (DOAS) <\/td>\n<\/tr>\n
192<\/td>\nFigure 5-47 (HV15) DOAS unit with water coil. <\/td>\n<\/tr>\n
194<\/td>\nSTRATEGIES FOR ALL SYSTEM TYPES <\/td>\n<\/tr>\n
195<\/td>\nFigure 5-58 (HV20) Conventional series-connected heat recovery. <\/td>\n<\/tr>\n
201<\/td>\nFigure 5-49 (HV30) Typical noise paths for interior-mounted HVAC units. <\/td>\n<\/tr>\n
205<\/td>\nREFERENCES AND RESOURCES
Figure 5-50 (HV35) CFD model for a classroom. <\/td>\n<\/tr>\n
208<\/td>\nRENEWABLE ENERGY
OVERVIEW
COMMON TERMINOLOGY <\/td>\n<\/tr>\n
209<\/td>\nFigure 5-51 Typical PV alternating current system diagram. <\/td>\n<\/tr>\n
210<\/td>\nDESIGN STRATEGIES <\/td>\n<\/tr>\n
212<\/td>\nFigure 5-52 (RE5) Roof-mounted PV system.
Figure 5-53 (RE5) PV canopy-mounted PV system. <\/td>\n<\/tr>\n
214<\/td>\nFigure 5-54 (RE7) Typical PV single-line diagram. <\/td>\n<\/tr>\n
215<\/td>\nIMPLEMENTATION STRATEGIES <\/td>\n<\/tr>\n
217<\/td>\nREFERENCES AND RESOURCES <\/td>\n<\/tr>\n
220<\/td>\nCase Study\u2014Friends School of Portland <\/td>\n<\/tr>\n
222<\/td>\nAppendix A\u2014Envelope Thermal Performance Factor <\/td>\n<\/tr>\n
223<\/td>\nTable A-1 Opaque Construction Options <\/td>\n<\/tr>\n
224<\/td>\nAppendix B\u2014International Climatic Zone Definitions
Table B-1 International Climate Zone Definitions <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":"

Advanced Energy Design Guide for K-12 School Buildings – Achieving Zero Energy<\/b><\/p>\n\n\n\n\n
Published By<\/td>\nPublication Date<\/td>\nNumber of Pages<\/td>\n<\/tr>\n
ASHRAE<\/b><\/a><\/td>\n2018<\/td>\n203<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n","protected":false},"featured_media":180162,"template":"","meta":{"rank_math_lock_modified_date":false,"ep_exclude_from_search":false},"product_cat":[2719],"product_tag":[],"class_list":{"0":"post-180161","1":"product","2":"type-product","3":"status-publish","4":"has-post-thumbnail","6":"product_cat-ashrae","8":"first","9":"instock","10":"sold-individually","11":"shipping-taxable","12":"purchasable","13":"product-type-simple"},"_links":{"self":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product\/180161","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product"}],"about":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/types\/product"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media\/180162"}],"wp:attachment":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media?parent=180161"}],"wp:term":[{"taxonomy":"product_cat","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_cat?post=180161"},{"taxonomy":"product_tag","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_tag?post=180161"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}