{"id":137808,"date":"2024-10-19T07:58:00","date_gmt":"2024-10-19T07:58:00","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/fema-p-751-2012\/"},"modified":"2024-10-25T00:09:09","modified_gmt":"2024-10-25T00:09:09","slug":"fema-p-751-2012","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/fema\/fema-p-751-2012\/","title":{"rendered":"FEMA P 751 2012"},"content":{"rendered":"
None<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
1<\/td>\n | FEMA P-751: 2009 NEHRP Recommended Seismic Provisions: Design Examples <\/td>\n<\/tr>\n | ||||||
3<\/td>\n | TITLE PAGE <\/td>\n<\/tr>\n | ||||||
5<\/td>\n | FOREWORD <\/td>\n<\/tr>\n | ||||||
6<\/td>\n | PREFACE <\/td>\n<\/tr>\n | ||||||
9<\/td>\n | TABLE OF CONTENTS <\/td>\n<\/tr>\n | ||||||
19<\/td>\n | CHAPTER 1: INTRODUCTION <\/td>\n<\/tr>\n | ||||||
21<\/td>\n | 1.1 EVOLUTION OF EARTHQUAKE ENGINEERING <\/td>\n<\/tr>\n | ||||||
24<\/td>\n | 1.2 HISTORY AND ROLE OF THE NEHRP PROVISIONS <\/td>\n<\/tr>\n | ||||||
26<\/td>\n | 1.3 THE NEHRP DESIGN EXAMPLES <\/td>\n<\/tr>\n | ||||||
29<\/td>\n | 1.4 GUIDE TO USE OF THE PROVISIONS <\/td>\n<\/tr>\n | ||||||
56<\/td>\n | 1.5 REFERENCES <\/td>\n<\/tr>\n | ||||||
57<\/td>\n | CHAPTER 2: FUNDAMENTALS <\/td>\n<\/tr>\n | ||||||
59<\/td>\n | 2.1 EARTHQUAKE PHENOMENA <\/td>\n<\/tr>\n | ||||||
61<\/td>\n | 2.2 STRUCTURAL RESPONSE TO GROUND SHAKING 2.2.1 Response Spectra <\/td>\n<\/tr>\n | ||||||
67<\/td>\n | 2.2.2 Inelastic Response <\/td>\n<\/tr>\n | ||||||
70<\/td>\n | 2.2.3 Building Materials <\/td>\n<\/tr>\n | ||||||
72<\/td>\n | 2.2.4 Building Systems <\/td>\n<\/tr>\n | ||||||
73<\/td>\n | 2.2.5 Supplementary Elements Added to Improve Structural Performance <\/td>\n<\/tr>\n | ||||||
74<\/td>\n | 2.3 ENGINEERING PHILOSOPHY <\/td>\n<\/tr>\n | ||||||
76<\/td>\n | 2.4 STRUCTURAL ANALYSIS <\/td>\n<\/tr>\n | ||||||
78<\/td>\n | 2.5 NONSTRUCTURAL ELEMENTS OF BUILDINGS <\/td>\n<\/tr>\n | ||||||
79<\/td>\n | 2.6 QUALITY ASSURANCE <\/td>\n<\/tr>\n | ||||||
81<\/td>\n | CHAPTER 3: EARTHQUAKE GROUND MOTION <\/td>\n<\/tr>\n | ||||||
82<\/td>\n | 3.1 BASIS OF EARTHQUAKE GROUND MOTION MAPS 3.1.1 ASCE7-\u00ad05 Seismic Maps <\/td>\n<\/tr>\n | ||||||
83<\/td>\n | 3.1.2 MCER Ground Motions in the Provisions and in ASCE 7-\u00ad10 <\/td>\n<\/tr>\n | ||||||
87<\/td>\n | 3.1.3 PGA Maps in the Provisions and in ASCE 7-\u00ad10 3.1.4 Basis of Vertical Ground Motions in the Provisions and in ASCE 7\u201010 3.1.5 Summary <\/td>\n<\/tr>\n | ||||||
88<\/td>\n | 3.1.6 References <\/td>\n<\/tr>\n | ||||||
89<\/td>\n | 3.2 DETERMINATION OF GROUND MOTION VALUES AND SPECTRA 3.2.1 ASCE 7-\u00ad05 Ground Motion Values <\/td>\n<\/tr>\n | ||||||
90<\/td>\n | 3.2.2 2009 Provisions Ground Motion Values <\/td>\n<\/tr>\n | ||||||
91<\/td>\n | 3.2.3 ASCE 7\u00ad\u201010 Ground Motion Values <\/td>\n<\/tr>\n | ||||||
92<\/td>\n | 3.2.4 Horizontal Response Spectra <\/td>\n<\/tr>\n | ||||||
93<\/td>\n | 3.2.5 Vertical Response Spectra <\/td>\n<\/tr>\n | ||||||
94<\/td>\n | 3.2.6 Peak Ground Accelerations 3.3 SELECTION AND SCALING OF GROUND MOTION RECORDS <\/td>\n<\/tr>\n | ||||||
95<\/td>\n | 3.3.1 Approach to GroundMotion Selection and Scaling <\/td>\n<\/tr>\n | ||||||
104<\/td>\n | 3.3.2 Two\u2010Component Records for Three Dimensional Analysis <\/td>\n<\/tr>\n | ||||||
107<\/td>\n | 3.3.3 One\u00ad\u2010Component Records for Two\u2010Dimensional Analysis <\/td>\n<\/tr>\n | ||||||
108<\/td>\n | 3.3.4 References <\/td>\n<\/tr>\n | ||||||
109<\/td>\n | CHAPTER 4: STRUCTURAL ANALYSIS <\/td>\n<\/tr>\n | ||||||
111<\/td>\n | 4.1 IRREGULAR 12-\u00adSTORY STEEL FRAME BUILDING, STOCKTON, CALIFORNIA 4.1.1 Introduction 4.1.2 Description of Building and Structure <\/td>\n<\/tr>\n | ||||||
112<\/td>\n | 4.1.3 Seismic Ground Motion Parameters <\/td>\n<\/tr>\n | ||||||
116<\/td>\n | 4.1.4 Dynamic Properties <\/td>\n<\/tr>\n | ||||||
119<\/td>\n | 4.1.5 Equivalent Lateral Force Analysis <\/td>\n<\/tr>\n | ||||||
137<\/td>\n | 4.1.6 Modal Response Spectrum Analysis <\/td>\n<\/tr>\n | ||||||
147<\/td>\n | 4.1.7 Modal Response History Analysis <\/td>\n<\/tr>\n | ||||||
158<\/td>\n | 4.1.8 Comparison of Results from Various Methods of Analysis <\/td>\n<\/tr>\n | ||||||
161<\/td>\n | 4.1.9 Consideration of Higher Modes in Analysis <\/td>\n<\/tr>\n | ||||||
164<\/td>\n | 4.1.10 Commentary on the ASCE 7 Requirements for Analysis <\/td>\n<\/tr>\n | ||||||
165<\/td>\n | 4.2 SIX\u2010STORY STEEL FRAME BUILDING, SEATTLE, WASHINGTON 4.2.1 Description of Structure <\/td>\n<\/tr>\n | ||||||
168<\/td>\n | 4.2.2 Loads <\/td>\n<\/tr>\n | ||||||
172<\/td>\n | 4.2.3 Preliminaries to Main Structural Analysis <\/td>\n<\/tr>\n | ||||||
181<\/td>\n | 4.2.4 Description of Model Used for Detailed Structural Analysis <\/td>\n<\/tr>\n | ||||||
202<\/td>\n | 4.2.5 Nonlinear Static Analysis <\/td>\n<\/tr>\n | ||||||
217<\/td>\n | 4.2.6 Response History Analysis <\/td>\n<\/tr>\n | ||||||
242<\/td>\n | 4.2.7 Summary and Conclusions <\/td>\n<\/tr>\n | ||||||
245<\/td>\n | CHAPTER 5: FOUNDATION ANALYSIS AND DESIGN <\/td>\n<\/tr>\n | ||||||
247<\/td>\n | 5.1 SHALLOW FOUNDATIONS FOR A SEVEN-\u00adSTORY OFFICE BUILDING, LOS ANGELES, CALIFORNIA 5.1.1 Basic Information <\/td>\n<\/tr>\n | ||||||
252<\/td>\n | 5.1.2 Design for Gravity Loads <\/td>\n<\/tr>\n | ||||||
255<\/td>\n | 5.1.3 Design for Moment-\u00adResisting Frame System <\/td>\n<\/tr>\n | ||||||
260<\/td>\n | 5.1.4 Design for Concentrically Braced Frame System <\/td>\n<\/tr>\n | ||||||
269<\/td>\n | 5.1.5 Cost Comparison 5.2 DEEP FOUNDATIONS FOR A 12-\u00adSTORY BUILDING, SEISMIC DESIGN CATEGORY D 5.2.1 Basic Information <\/td>\n<\/tr>\n | ||||||
277<\/td>\n | 5.2.2 Pile Analysis, Design and Detailing <\/td>\n<\/tr>\n | ||||||
291<\/td>\n | 5.2.3 Other Considerations <\/td>\n<\/tr>\n | ||||||
297<\/td>\n | CHAPTER 6: STRUCTURAL STEEL DESIGN <\/td>\n<\/tr>\n | ||||||
299<\/td>\n | 6.1 INDUSTRIAL HIGH-\u00adCLEARANCE BUILDING, ASTORIA, OREGON 6.1.1 Building Description <\/td>\n<\/tr>\n | ||||||
302<\/td>\n | 6.1.2 Design Parameters <\/td>\n<\/tr>\n | ||||||
303<\/td>\n | 6.1.3 Structural Design Criteria <\/td>\n<\/tr>\n | ||||||
306<\/td>\n | 6.1.4 Analysis <\/td>\n<\/tr>\n | ||||||
312<\/td>\n | 6.1.5 Proportioning and Details <\/td>\n<\/tr>\n | ||||||
336<\/td>\n | 6.2 SEVEN\u00ad\u2010STORY OFFICE BUILDING, LOS ANGELES, CALIFORNIA 6.2.1 Building Description <\/td>\n<\/tr>\n | ||||||
338<\/td>\n | 6.2.2 Basic Requirements <\/td>\n<\/tr>\n | ||||||
340<\/td>\n | 6.2.3 Structural Design Criteria <\/td>\n<\/tr>\n | ||||||
342<\/td>\n | 6.2.4 Analysis and Design of Alternative A: SMF <\/td>\n<\/tr>\n | ||||||
357<\/td>\n | 6.2.5 Analysis and Design of Alternative B: SCBF <\/td>\n<\/tr>\n | ||||||
368<\/td>\n | 6.3 TEN-\u00adSTORY HOSPITAL, SEATTLE, WASHINGTON 6.3.1 Building Description <\/td>\n<\/tr>\n | ||||||
372<\/td>\n | 6.3.2 Basic Requirements <\/td>\n<\/tr>\n | ||||||
374<\/td>\n | 6.3.3 Structural Design Criteria <\/td>\n<\/tr>\n | ||||||
376<\/td>\n | 6.3.4 Elastic Analysis <\/td>\n<\/tr>\n | ||||||
383<\/td>\n | 6.3.5 Initial Proportioning and Details <\/td>\n<\/tr>\n | ||||||
389<\/td>\n | 6.3.6 Nonlinear Response History Analysis <\/td>\n<\/tr>\n | ||||||
401<\/td>\n | CHAPTER 7: REINFORCED CONCRETE <\/td>\n<\/tr>\n | ||||||
407<\/td>\n | 7.1 SEISMIC DESIGN REQUIREMENTS 7.1.1 Seismic Response Parameters <\/td>\n<\/tr>\n | ||||||
408<\/td>\n | 7.1.2 Seismic Design Category 7.1.3 Structural Systems <\/td>\n<\/tr>\n | ||||||
409<\/td>\n | 7.1.4 Structural Configuration 7.1.5 Load Combinations <\/td>\n<\/tr>\n | ||||||
410<\/td>\n | 7.1.6 Material Properties <\/td>\n<\/tr>\n | ||||||
411<\/td>\n | 7.2 DETERMINATION OF SEISMIC FORCES 7.2.1 Modeling Criteria <\/td>\n<\/tr>\n | ||||||
412<\/td>\n | 7.2.2 Building Mass <\/td>\n<\/tr>\n | ||||||
413<\/td>\n | 7.2.3 Analysis Procedures 7.2.4 Development of Equivalent Lateral Forces <\/td>\n<\/tr>\n | ||||||
419<\/td>\n | 7.2.5 Direction of Loading 7.2.6 Modal Analysis Procedure <\/td>\n<\/tr>\n | ||||||
421<\/td>\n | 7.3 DRIFT AND P\u2010DELTA EFFECTS 7.3.1 Torsion Irregularity Check for the Berkeley Building <\/td>\n<\/tr>\n | ||||||
423<\/td>\n | 7.3.2 Drift Check for the Berkeley Building <\/td>\n<\/tr>\n | ||||||
428<\/td>\n | 7.3.3 P-\u00addelta Check for the Berkeley Building <\/td>\n<\/tr>\n | ||||||
429<\/td>\n | 7.3.4 Torsion Irregularity Check for the Honolulu Building 7.3.5 Drift Check for the Honolulu Building <\/td>\n<\/tr>\n | ||||||
431<\/td>\n | 7.3.6 P-\u00adDelta Check for the Honolulu Building <\/td>\n<\/tr>\n | ||||||
432<\/td>\n | 7.4 STRUCTURAL DESIGN OF THE BERKELEY BUILDING <\/td>\n<\/tr>\n | ||||||
433<\/td>\n | 7.4.1 Analysis of Frame-\u00adOnly Structure for 25 Percent of Lateral Load <\/td>\n<\/tr>\n | ||||||
437<\/td>\n | 7.4.2 Design o fMoment Frame Members for the Berkeley Building <\/td>\n<\/tr>\n | ||||||
460<\/td>\n | 7.4.3 Design of Frame 3 Shear Wall <\/td>\n<\/tr>\n | ||||||
466<\/td>\n | 7.5 STRUCTURAL DESIGN OF THE HONOLULU BUILDING 7.5.1 Compare Seismic Versus Wind Loading <\/td>\n<\/tr>\n | ||||||
469<\/td>\n | 7.5.2 Design and Detailing of Members of Frame 1 <\/td>\n<\/tr>\n | ||||||
481<\/td>\n | CHAPTER 8: PRECAST CONCRETE DESIGN <\/td>\n<\/tr>\n | ||||||
484<\/td>\n | 8.1 HORIZONTAL DIAPHRAGMS 8.1.1 Untopped Precast Concrete Units for Five-\u00adStory Masonry Buildings Located in Birmingham, Alabama and New York, New York <\/td>\n<\/tr>\n | ||||||
498<\/td>\n | 8.1.2 Topped Precast Concrete Units for Five-\u00adStory Masonry Building Located in Los Angeles, California (see Sec.10.2) <\/td>\n<\/tr>\n | ||||||
506<\/td>\n | 8.2 THREE-STORY OFFICE BUILDING WITH INTERMEDIATE PRECAST CONCRETESHEAR WALLS 8.2.1 Building Description <\/td>\n<\/tr>\n | ||||||
508<\/td>\n | 8.2.2 Design Requirements <\/td>\n<\/tr>\n | ||||||
509<\/td>\n | 8.2.3 Load Combinations <\/td>\n<\/tr>\n | ||||||
510<\/td>\n | 8.2.4 Seismic Force Analysis <\/td>\n<\/tr>\n | ||||||
513<\/td>\n | 8.2.5 Proportioning and Detailing <\/td>\n<\/tr>\n | ||||||
525<\/td>\n | 8.3 ONE-STORY PRECAST SHEAR WALL BUILDING 8.3.1 Building Description <\/td>\n<\/tr>\n | ||||||
528<\/td>\n | 8.3.2 Design Requirements <\/td>\n<\/tr>\n | ||||||
529<\/td>\n | 8.3.3 Load Combinations <\/td>\n<\/tr>\n | ||||||
530<\/td>\n | 8.3.4 Seismic Force Analysis <\/td>\n<\/tr>\n | ||||||
532<\/td>\n | 8.3.5 Proportioning and Detailing <\/td>\n<\/tr>\n | ||||||
545<\/td>\n | 8.4 SPECIAL MOMENT FRAMES CONSTRUCTED USING PRECAST CONCRETE 8.4.1 Ductile Connections <\/td>\n<\/tr>\n | ||||||
547<\/td>\n | 8.4.2 Strong Connections <\/td>\n<\/tr>\n | ||||||
551<\/td>\n | CHAPTER 9: COMPOSITE STEEL AND CONCRETE <\/td>\n<\/tr>\n | ||||||
553<\/td>\n | 9.1 BUILDING DESCRIPTION <\/td>\n<\/tr>\n | ||||||
557<\/td>\n | 9.2 PARTIALLY RESTRAINED COMPOSITE CONNECTIONS 9.2.1 Connection Details <\/td>\n<\/tr>\n | ||||||
560<\/td>\n | 9.2.2 Connection Moment\u2010Rotation Curves <\/td>\n<\/tr>\n | ||||||
563<\/td>\n | 9.2.3 Connection Design <\/td>\n<\/tr>\n | ||||||
567<\/td>\n | 9.3 LOADS AND LOAD COMBINATIONS 9.3.1 Gravity Loads and Seismic Weight <\/td>\n<\/tr>\n | ||||||
568<\/td>\n | 9.3.2 Seismic Loads <\/td>\n<\/tr>\n | ||||||
569<\/td>\n | 9.3.3 Wind Loads 9.3.4 Notional Loads <\/td>\n<\/tr>\n | ||||||
570<\/td>\n | 9.3.5 Load Combinations <\/td>\n<\/tr>\n | ||||||
571<\/td>\n | 9.4 DESIGN OF C-\u00adPRMF SYSTEM 9.4.1 Preliminary Design <\/td>\n<\/tr>\n | ||||||
572<\/td>\n | 9.4.2 Application of Loading <\/td>\n<\/tr>\n | ||||||
573<\/td>\n | 9.4.3 Beam and Column Moment of Inertia <\/td>\n<\/tr>\n | ||||||
574<\/td>\n | 9.4.4 Connection Behavior Modeling 9.4.5 Building Drift and P-\u00addelta Checks <\/td>\n<\/tr>\n | ||||||
576<\/td>\n | 9.4.6 Beam Design <\/td>\n<\/tr>\n | ||||||
577<\/td>\n | 9.4.7 Column Design <\/td>\n<\/tr>\n | ||||||
578<\/td>\n | 9.4.8 Connection Design <\/td>\n<\/tr>\n | ||||||
579<\/td>\n | 9.4.9 Column Splices 9.4.10 Column Base Design <\/td>\n<\/tr>\n | ||||||
581<\/td>\n | CHAPTER 10: MASONRY <\/td>\n<\/tr>\n | ||||||
583<\/td>\n | 10.1 WAREHOUSE WITH MASONRY WALLS AND WOOD ROOF, LOS ANGELES, CALIFORNIA 10.1.1 Building Description <\/td>\n<\/tr>\n | ||||||
584<\/td>\n | 10.1.2 Design Requirements <\/td>\n<\/tr>\n | ||||||
586<\/td>\n | 10.1.3 Load Combinations <\/td>\n<\/tr>\n | ||||||
588<\/td>\n | 10.1.4 Seismic Forces <\/td>\n<\/tr>\n | ||||||
589<\/td>\n | 10.1.5 Side Walls <\/td>\n<\/tr>\n | ||||||
605<\/td>\n | 10.1.6 End Walls <\/td>\n<\/tr>\n | ||||||
624<\/td>\n | 10.1.7 In-\u00adPlane Deflection\u2013 EndWalls <\/td>\n<\/tr>\n | ||||||
625<\/td>\n | 10.1.8 Bond Beam\u2013 Side Walls (and End Walls) 10.2 FIVE-\u00ad\u2010STORY MASONRY RESIDENTIAL BUILDINGS IN BIRMINGHAM, ALABAMA; ALBUQUERQUE, NEW MEXICO; AND SAN RAFAEL, CALIFORNIA 10.2.1 Building Description <\/td>\n<\/tr>\n | ||||||
628<\/td>\n | 10.2.2 Design Requirements <\/td>\n<\/tr>\n | ||||||
630<\/td>\n | 10.2.3 Load Combinations <\/td>\n<\/tr>\n | ||||||
631<\/td>\n | 10.2.4 Seismic Design for Birmingham 1 <\/td>\n<\/tr>\n | ||||||
649<\/td>\n | 10.2.5 Seismic Design for Albuquerque <\/td>\n<\/tr>\n | ||||||
661<\/td>\n | 10.2.6 Birmingham 2 Seismic Design <\/td>\n<\/tr>\n | ||||||
669<\/td>\n | 10.2.7 Seismic Design for San Rafael <\/td>\n<\/tr>\n | ||||||
681<\/td>\n | 10.2.8 Summary of Wall D Design for All Four Locations <\/td>\n<\/tr>\n | ||||||
683<\/td>\n | CHAPTER 11: WOOD DESIGN <\/td>\n<\/tr>\n | ||||||
685<\/td>\n | 11.1 THREE-\u00ad\u2010STORY WOOD APARTMENT BUILDING, SEATTLE, WASHINGTON 11.1.1 Building Description <\/td>\n<\/tr>\n | ||||||
688<\/td>\n | 11.1.2 Basic Requirements <\/td>\n<\/tr>\n | ||||||
691<\/td>\n | 11.1.3 Seismic Force Analysis <\/td>\n<\/tr>\n | ||||||
693<\/td>\n | 11.1.4 Basic Proportioning <\/td>\n<\/tr>\n | ||||||
712<\/td>\n | 11.2 WAREHOUSE WITH MASONRY WALLS AND WOOD ROOF, LOS ANGELES, CALIFORNIA 11.2.1 Building Description <\/td>\n<\/tr>\n | ||||||
713<\/td>\n | 11.2.2 Basic Requirements <\/td>\n<\/tr>\n | ||||||
715<\/td>\n | 11.2.3 Seismic Force Analysis <\/td>\n<\/tr>\n | ||||||
716<\/td>\n | 11.2.4 Basic Proportioning of Diaphragm Elements <\/td>\n<\/tr>\n | ||||||
737<\/td>\n | CHAPTER 12: SEISMICALLY ISOLATED STRUCTURES <\/td>\n<\/tr>\n | ||||||
740<\/td>\n | 12.1 BACKGROUND AND BASIC CONCEPTS 12.1.1 Types of Isolation Systems <\/td>\n<\/tr>\n | ||||||
741<\/td>\n | 12.1.2 Definition of Elements of an Isolated Structure <\/td>\n<\/tr>\n | ||||||
742<\/td>\n | 12.1.3 Design Approach <\/td>\n<\/tr>\n | ||||||
743<\/td>\n | 12.1.4 Effective Stiffness and Effective Damping 12.2 CRITERIA SELECTION <\/td>\n<\/tr>\n | ||||||
745<\/td>\n | 12.3 EQUIVALENT LATERAL FORCE PROCEDURE 12.3.1 Isolation System Displacement <\/td>\n<\/tr>\n | ||||||
747<\/td>\n | 12.3.2 Design Forces <\/td>\n<\/tr>\n | ||||||
751<\/td>\n | 12.4 DYNAMIC LATERAL RESPONSE PROCEDURE 12.4.1 Minimum Design Criteria <\/td>\n<\/tr>\n | ||||||
752<\/td>\n | 12.4.2 Modeling Requirements <\/td>\n<\/tr>\n | ||||||
754<\/td>\n | 12.4.3 Response Spectrum Analysis 12.4.4 Response History Analysis <\/td>\n<\/tr>\n | ||||||
757<\/td>\n | 12.5 EMERGENCY OPERATIONS CENTER USING DOUBLE-\u00ad\u2010CONCAVE FRICTION PENDULUM BEARINGS, OAKLAND, CALIFORNIA <\/td>\n<\/tr>\n | ||||||
758<\/td>\n | 12.5.1 System Description <\/td>\n<\/tr>\n | ||||||
761<\/td>\n | 12.5.2 Basic Requirements <\/td>\n<\/tr>\n | ||||||
770<\/td>\n | 12.5.3 Seismic Force Analysis <\/td>\n<\/tr>\n | ||||||
772<\/td>\n | 12.5.4 Preliminary Design Based on the ELF Procedure <\/td>\n<\/tr>\n | ||||||
787<\/td>\n | 12.5.5 Design Verification Using Nonlinear Response History Analysis <\/td>\n<\/tr>\n | ||||||
797<\/td>\n | 12.5.6 Design and Testing Criteria for Isolator Units <\/td>\n<\/tr>\n | ||||||
801<\/td>\n | CHAPTER 13: NONBUILDING STRUCTURE DESIGN <\/td>\n<\/tr>\n | ||||||
804<\/td>\n | 13.1 NONBUILDING STRUCTURES VERSUS NONSTRUCTURAL COMPONENTS <\/td>\n<\/tr>\n | ||||||
805<\/td>\n | 13.1.1 Nonbuilding Structure <\/td>\n<\/tr>\n | ||||||
806<\/td>\n | 13.1.2 Nonstructural Component 13.2 PIPERACK, OXFORD, MISSISSIPPI <\/td>\n<\/tr>\n | ||||||
807<\/td>\n | 13.2.1 Description 13.2.2 Provisions Parameters <\/td>\n<\/tr>\n | ||||||
808<\/td>\n | 13.2.3 Design in theTransverse Direction <\/td>\n<\/tr>\n | ||||||
811<\/td>\n | 13.2.4 Design in the Longitudinal Direction <\/td>\n<\/tr>\n | ||||||
813<\/td>\n | 13.3 STEEL STORAGE RACK, OXFORD, MISSISSIPPI 13.3.1 Description <\/td>\n<\/tr>\n | ||||||
814<\/td>\n | 13.3.2 Provisions Parameters <\/td>\n<\/tr>\n | ||||||
815<\/td>\n | 13.3.3 Design of the System <\/td>\n<\/tr>\n | ||||||
817<\/td>\n | 13.4 ELECTRIC GENERATING POWER PLANT, MERNA, WYOMING 13.4.1 Description <\/td>\n<\/tr>\n | ||||||
819<\/td>\n | 13.4.2 Provisions Parameters <\/td>\n<\/tr>\n | ||||||
820<\/td>\n | 13.4.3 Design in the North-\u00ad\u2010South Direction <\/td>\n<\/tr>\n | ||||||
821<\/td>\n | 13.4.4 Design in the East-\u00ad\u2010West Direction 13.5 PIER\/WHARF DESIGN, LONG BEACH, CALIFORNIA 13.5.1 Description <\/td>\n<\/tr>\n | ||||||
822<\/td>\n | 13.5.2 Provisions Parameters <\/td>\n<\/tr>\n | ||||||
823<\/td>\n | 13.5.3 Design of the System <\/td>\n<\/tr>\n | ||||||
824<\/td>\n | 13.6 TANKS AND VESSELS, EVERETT, WASHINGTON <\/td>\n<\/tr>\n | ||||||
825<\/td>\n | 13.6.1 Flat-\u00ad\u2010Bottom Water Storage Tank <\/td>\n<\/tr>\n | ||||||
828<\/td>\n | 13.6.2 Flat-\u00ad\u2010Bottom Gasoline Tank <\/td>\n<\/tr>\n | ||||||
831<\/td>\n | 13.7 VERTICAL VESSEL, ASHPORT, TENNESSEE 13.7.1 Description <\/td>\n<\/tr>\n | ||||||
832<\/td>\n | 13.7.2 Provisions Parameters <\/td>\n<\/tr>\n | ||||||
833<\/td>\n | 13.7.3 Design of the System <\/td>\n<\/tr>\n | ||||||
837<\/td>\n | CHAPTER 14: DESIGN FOR NONSTRUCTURAL COMPONENTS <\/td>\n<\/tr>\n | ||||||
839<\/td>\n | 14.1 DEVELOPMENT AND BACKGROUND OF THE REQUIREMENTS FOR NONSTRUCTURAL COMPONENTS 14.1.1 Approach to Nonstructural Components <\/td>\n<\/tr>\n | ||||||
840<\/td>\n | 14.1.2 Force Equations <\/td>\n<\/tr>\n | ||||||
841<\/td>\n | 14.1.3 Load Combinations and Acceptance Criteria <\/td>\n<\/tr>\n | ||||||
842<\/td>\n | 14.1.4 Component Amplification Factor <\/td>\n<\/tr>\n | ||||||
843<\/td>\n | 14.1.5 Seismic Coefficient at Grade 14.1.6 Relative Location Factor 14.1.7 Component Response Modification Factor 14.1.8 Component Importance Factor <\/td>\n<\/tr>\n | ||||||
844<\/td>\n | 14.1.9 Accommodation of Seismic Relative Displacements <\/td>\n<\/tr>\n | ||||||
845<\/td>\n | 14.1.10 Component Anchorage Factors and Acceptance Criteria 14.1.11 Construction Documents <\/td>\n<\/tr>\n | ||||||
846<\/td>\n | 14.2 ARCHITECTURAL CONCRETE WALL PANEL 14.2.1 Example Description <\/td>\n<\/tr>\n | ||||||
848<\/td>\n | 14.2.2 Design Requirements 14.2.3 Spandrel Panel <\/td>\n<\/tr>\n | ||||||
855<\/td>\n | 14.2.4 Column Cover <\/td>\n<\/tr>\n | ||||||
856<\/td>\n | 14.2.5 Additional Design Considerations <\/td>\n<\/tr>\n | ||||||
857<\/td>\n | 14.3 HVAC FAN UNIT SUPPORT 14.3.1 Example Description <\/td>\n<\/tr>\n | ||||||
858<\/td>\n | 14.3.2 Design Requirements <\/td>\n<\/tr>\n | ||||||
859<\/td>\n | 14.3.3 Direct Attachment to Structure <\/td>\n<\/tr>\n | ||||||
862<\/td>\n | 14.3.4 Support on Vibration Isolation Springs <\/td>\n<\/tr>\n | ||||||
867<\/td>\n | 14.3.5 Additional Considerations for Supporton Vibration Isolators <\/td>\n<\/tr>\n | ||||||
869<\/td>\n | 14.4 ANALYSIS OF PIPING SYSTEMS 14.4.1 ASME Code Allowable Stress Approach <\/td>\n<\/tr>\n | ||||||
870<\/td>\n | 14.4.2 Allowable Stress Load Combinations <\/td>\n<\/tr>\n | ||||||
872<\/td>\n | 14.4.3 Application of the Standard <\/td>\n<\/tr>\n | ||||||
874<\/td>\n | 14.5 PIPING SYSTEM SEISMIC DESIGN 14.5.1 Example Description <\/td>\n<\/tr>\n | ||||||
879<\/td>\n | 14.5.2 Design Requirements <\/td>\n<\/tr>\n | ||||||
881<\/td>\n | 14.5.3 Piping System Design <\/td>\n<\/tr>\n | ||||||
884<\/td>\n | 14.5.4 Pipe Supports and Bracing <\/td>\n<\/tr>\n | ||||||
889<\/td>\n | 14.5.5 Design for Displacements <\/td>\n<\/tr>\n | ||||||
891<\/td>\n | 14.6 ELEVATED VESSEL SEISMIC DESIGN 14.6.1 Example Description <\/td>\n<\/tr>\n | ||||||
894<\/td>\n | 14.6.2 Design Requirements <\/td>\n<\/tr>\n | ||||||
896<\/td>\n | 14.6.3 Load Combinations 14.6.4 Forces in Vessel Supports <\/td>\n<\/tr>\n | ||||||
898<\/td>\n | 14.6.5 Vessel Support and Attachment <\/td>\n<\/tr>\n | ||||||
901<\/td>\n | 14.6.6 Supporting Frame <\/td>\n<\/tr>\n | ||||||
905<\/td>\n | 14.6.7 Design Considerations for the Vertical Load-\u00ad\u2010Carrying System <\/td>\n<\/tr>\n | ||||||
909<\/td>\n | A – THE BUILDING SEISMIC SAFETY COUNCIL <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" FEMA P-751 – 2009 NEHRP Recommended Seismic Provisions: Design Examples<\/b><\/p>\n |