BSI PD IEC TR 61282-14:2019
$167.15
Fibre optic communication system design guides – Determination of the uncertainties of attenuation measurements in fibre plants
Published By | Publication Date | Number of Pages |
BSI | 2019 | 44 |
This part of IEC 61282, which is a Technical Report, establishes the detailed analysis and calculation of the uncertainties related to the measurement of the attenuation of both multimode and single mode optical fibre cabling using optical light sources and power meters.
PDF Catalog
PDF Pages | PDF Title |
---|---|
2 | undefined |
4 | CONTENTS |
7 | FOREWORD |
9 | INTRODUCTION |
10 | 1 Scope 2 Normative references 3 Terms, definitions and abbreviated terms 3.1 Terms and definitions |
12 | 3.2 Abbreviated terms 4 Overview of uncertainty 4.1 What is uncertainty? |
13 | 4.2 Origin of uncertainties 4.3 What may not be considered as uncertainty? 5 Fibre cabling attenuation measurement 5.1 Test methods 5.2 Sources of uncertainty to be considered 5.2.1 Analysis |
14 | Tables Table 1 ā Source of uncertainty (raw list) |
15 | Figures Figure 1 ā Fishbone analysis |
16 | 5.2.2 Uncertainties due to the environment 5.2.3 Uncertainties due to operator skills 5.2.4 Uncertainties due to test methods 5.2.5 Uncertainties due to measuring instruments |
17 | Table 2 ā Uncertainties due to measuring instruments |
18 | 5.2.6 Uncertainties due to the setup 5.2.7 Uncertainties due to cabling Table 3 ā Uncertainties due to the setup Table 4 ā Uncertainties due to cabling |
19 | 6 Uncertainties estimation 6.1 Measurement model Figure 2 ā Measurement model |
21 | 6.2 Accumulation of uncertainties 7 General representation of the equation using sensitivity coefficients |
23 | Table 5 ā Sensitivity coefficients for IEC 61280-4-1 and IEC 61280-4-2 methods |
24 | Table 6 ā Sensitivity coefficients for ISO/IEC 14763-3:2014 methods |
25 | 8 Calculation 8.1 Combined standard uncertainty 8.2 Expanded uncertainty 8.3 Determination of the coverage factor k 8.3.1 General approach 8.3.2 Discussion |
26 | Table 7 ā Values of k95 for different values of Ī½ Table 8 ā Typical values of Ī½i |
27 | Annexes Annex A (informative) Mathematical basis A.1 General A.2 Type A evaluation of uncertainty A.3 Type B evaluation of uncertainty |
28 | A.4 Determining the combined standard uncertainty |
29 | A.5 Reporting |
30 | Annex B (informative) Test methods B.1 Test methods as per IEC 61280-4-1 and 61280-4-2 B.1.1 General B.1.2 Measurement configuration B.1.3 One-cord reference configuration Figure B.1 ā Measurement configuration Figure B.2 ā One-cord reference measurement |
31 | B.1.4 Two-cord reference configuration B.1.5 Three-cord reference configuration B.2 Test methods defined in ISO/IEC 14763-3:2014 B.2.1 General Figure B.3 ā Two-cord reference measurement Figure B.4 ā Three-cord reference measurement |
32 | B.2.2 Channels Figure B.5 ā Measurement on channel Figure B.6 ā Channel reference measurement |
33 | B.2.3 Links Figure B.7 ā Link measurement configuration Figure B.8 ā Link reference measurement |
34 | Annex C (informative) Uncertainties evaluation C.1 Type A uncertainties C.1.1 General C.1.2 Evaluation of optical source instability and associated uncertainties C.2 Type B uncertainties C.2.1 General C.2.2 Evaluation of the power meter noise |
35 | C.2.3 Elements to be considered for power meter stability analysis C.2.4 Evaluation of the centre wavelength dependence |
36 | Figure C.1 ā Typical spectral response of a fibre Table C.1 ā Spectral attenuation coefficients |
37 | C.2.5 Spectral width dependence C.2.6 Evaluation of the uncertainties due to MM launch conditions Table C.2 ā Sensitivity coefficients |
38 | C.2.7 Evaluation of the PDL Figure C.2 ā Uncertainties due to the launch conditions for a given loss |
39 | C.2.8 Uncertainty of absolute power measurement |
40 | Annex D (informative) Typical values of uncertainties |
41 | Table D.1 ā Typical values of uncertainties |
42 | Annex E (informative) Linear to dB scale conversion of uncertainties E.1 Definition of decibel E.2 Conversion of relative uncertainties |
43 | Bibliography |