{"id":415388,"date":"2024-10-20T06:04:55","date_gmt":"2024-10-20T06:04:55","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bs-en-iec-629802022\/"},"modified":"2024-10-26T11:18:31","modified_gmt":"2024-10-26T11:18:31","slug":"bs-en-iec-629802022","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bs-en-iec-629802022\/","title":{"rendered":"BS EN IEC 62980:2022"},"content":{"rendered":"
This standard defines procedures for transferring power to non-powered IoT devices using the existing ISM band communication infrastructure and RF WPT and a protocol for a two-way, long-distance wireless network in which IoT devices and APs communicate using backscatter modulation of ISM-band signals. Three components are required for two-way, long-distance wireless communication using backscatter modulation of ISM-band signals: an STA that transmits wireless power and data packets to SSNs by forming ISM-band signal channels between HIE-APs, a batteryless SSN that changes the sensitivity of the channel signals received from the STA using backscatter modulation, and an HIE-AP that practically decodes the channel signals whose sensitivity was changed by the SSN. In this standard, the procedures for CW-type RF WPT using communication among these three components are specified based on application of the CSI or RSSI detection method of ISM-band communication. This standard proposes a convergence communication protocol than can deploy sensors, which can operate at low power (dozens of microwatts or less) without batteries, collect energy, and perform communication, to transmit power to SSNs using RF WPT based on parasitic communication. This method can be applied to application service areas such as domestic IoT, the micro-sensor industry, and industries related to environmental monitoring in the future<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
2<\/td>\n | undefined <\/td>\n<\/tr>\n | ||||||
5<\/td>\n | Annex ZA (normative)Normative references to international publicationswith their corresponding European publications <\/td>\n<\/tr>\n | ||||||
6<\/td>\n | English CONTENTS <\/td>\n<\/tr>\n | ||||||
9<\/td>\n | FOREWORD <\/td>\n<\/tr>\n | ||||||
11<\/td>\n | INTRODUCTION <\/td>\n<\/tr>\n | ||||||
12<\/td>\n | 1 Scope 2 Normative references 3 Terms, definitions and abbreviated terms <\/td>\n<\/tr>\n | ||||||
13<\/td>\n | 3.1 Terms and definitions 3.2 Abbreviated terms <\/td>\n<\/tr>\n | ||||||
14<\/td>\n | 4 Overview Figures Figure 1 \u2013 Usage of RF-WPT <\/td>\n<\/tr>\n | ||||||
15<\/td>\n | 5 Communication procedures for RF WPT 5.1 General Figure 2 \u2013 RF-WPT structure of using parasitic Wi-Fi communication technology <\/td>\n<\/tr>\n | ||||||
16<\/td>\n | 5.2 Communication procedures for parasitic downlink communication Figure 3 \u2013 Parasitic downlink\/uplink communication procedures <\/td>\n<\/tr>\n | ||||||
17<\/td>\n | 5.3 Communication procedures for parasitic uplink communication Figure 4 \u2013 Specific parasitic downlink communication procedures <\/td>\n<\/tr>\n | ||||||
18<\/td>\n | 5.4 Backscatter downlink\/uplink data flow Figure 5 \u2013 Specific parasitic uplink communication procedures <\/td>\n<\/tr>\n | ||||||
19<\/td>\n | 5.5 WPT process Figure 6 \u2013 Data flow during parasitic downlink\/uplink communication Figure 7 \u2013 RF WPT access procedures <\/td>\n<\/tr>\n | ||||||
20<\/td>\n | 6 Physical layer 6.1 Modulation\/coding method 6.1.1 General 6.1.2 Downlink modulation method Figure 8 \u2013 RF WPT control protocol <\/td>\n<\/tr>\n | ||||||
21<\/td>\n | 6.1.3 Uplink modulation method 6.1.4 Downlink coding method Figure 9 \u2013 PIE method packet configuration Figure 10 \u2013 Modulation and coding of the downlink preamble <\/td>\n<\/tr>\n | ||||||
22<\/td>\n | 6.1.5 Uplink coding method 6.2 Frame structure 6.2.1 General 6.2.2 Downlink frame structure Figure 11 \u2013 Modulation and coding of the downlink preamble Figure 12 \u2013 Modulation and coding of the uplink preamble Figure 13 \u2013 Modulation and coding of the uplink payload <\/td>\n<\/tr>\n | ||||||
23<\/td>\n | Figure 14 \u2013 Physical layer structure of the downlink frame Tables Table 1 \u2013 Downlink preamble structure Table 2 \u2013 Downlink payload structure <\/td>\n<\/tr>\n | ||||||
24<\/td>\n | 6.2.3 Uplink frame structure Figure 15 \u2013 Physical layer structure of the uplink frame Table 3 \u2013 Downlink frame check CRC Table 4 \u2013 Uplink preamble structure <\/td>\n<\/tr>\n | ||||||
25<\/td>\n | 7 Datalink layer 7.1 Message definition 7.1.1 General Table 5 \u2013 Uplink frame detection field structure Table 6 \u2013 Downlink payload structure <\/td>\n<\/tr>\n | ||||||
26<\/td>\n | Figure 16 \u2013 Model of command transmission between the STA and SSN Figure 17 \u2013 Diagram of sequential command transmission between the STA and SSN <\/td>\n<\/tr>\n | ||||||
27<\/td>\n | Table 7 \u2013 CMD list Table 8 \u2013 Responses for each CMD <\/td>\n<\/tr>\n | ||||||
28<\/td>\n | 7.1.2 Select step Figure 18 \u2013 SSN memory structure <\/td>\n<\/tr>\n | ||||||
29<\/td>\n | Figure 19 \u2013 Message exchange in the select step Table 9 \u2013 Select CMD <\/td>\n<\/tr>\n | ||||||
30<\/td>\n | 7.1.3 Inventory step Figure 20 \u2013 CRC-16 circuit example Table 10 \u2013 Valid response <\/td>\n<\/tr>\n | ||||||
31<\/td>\n | Figure 21 \u2013 Message exchange method of the inventory step Table 11 \u2013 Query CMD field <\/td>\n<\/tr>\n | ||||||
32<\/td>\n | Table 12 \u2013 QueryRep CMD field Table 13 \u2013 QueryAdj CMD field Table 14 \u2013 Valid_Query response field <\/td>\n<\/tr>\n | ||||||
33<\/td>\n | 7.1.4 Access step Table 15 \u2013 Ack CMD field Table 16 \u2013 Valid_Ack response field list <\/td>\n<\/tr>\n | ||||||
34<\/td>\n | Table 17 \u2013 Read CMD field Table 18 \u2013 Data field of the response to the read command Table 19 \u2013 Write CMD field Table 20 \u2013 Data field of the response to the write command <\/td>\n<\/tr>\n | ||||||
35<\/td>\n | 7.2 Data encoding 7.2.1 General 7.2.2 FM0 encoding Figure 22 \u2013 Basic functions for FM0 encoding Figure 23 \u2013 State diagram for FM0 encoding generation <\/td>\n<\/tr>\n | ||||||
36<\/td>\n | 7.2.3 Miller encoding Figure 24 \u2013 Basic functions for Miller encoding Figure 25 \u2013 State diagram for FM0 encoding generation <\/td>\n<\/tr>\n | ||||||
37<\/td>\n | 8 RF WPT control protocol 8.1 Wireless charging architecture 8.1.1 General Figure 26 \u2013 Encoding theory combining basic Miller functions <\/td>\n<\/tr>\n | ||||||
38<\/td>\n | 8.1.2 Power control purpose of RF WPT 8.1.3 HIE-AP operation control Figure 27 \u2013 Basic configuration of the RF wireless charging network of the proposed standard <\/td>\n<\/tr>\n | ||||||
39<\/td>\n | 8.1.4 SSN operation control Figure 28 \u2013 HIE-AP operation in RF WPT in the proposed standard Figure 29 \u2013 SSN operation in RF WPT in the proposed standard <\/td>\n<\/tr>\n | ||||||
40<\/td>\n | 8.2 RF WPT process 8.2.1 General Figure 30 \u2013 Operating range of the rectified battery voltage <\/td>\n<\/tr>\n | ||||||
41<\/td>\n | 8.2.2 General WPT management Figure 31 \u2013 RF WPT information acquisition and control protocol of the proposed standard Table 21 \u2013 WPT CMD field <\/td>\n<\/tr>\n | ||||||
42<\/td>\n | 8.2.3 SSN control Table 22 \u2013 WPT sub-CMD list Table 23 \u2013 SSN control field Table 24 \u2013 Detailed WPT field description <\/td>\n<\/tr>\n | ||||||
43<\/td>\n | 8.2.4 SSN static parameter Table 25 \u2013 Response to the SSN control CMD Table 26 \u2013 SSN static parameter field Table 27 \u2013 Rectifier maximum power field Table 28 \u2013 Rectifier minimum constant voltage Table 29 \u2013 Rectifier maximum constant voltage <\/td>\n<\/tr>\n | ||||||
44<\/td>\n | 8.2.5 SSN dynamic parameter Table 30 \u2013 Rectifier minimum constant voltage Table 31 \u2013 SSN dynamic parameter field Table 32 \u2013 Rectifier dynamic voltage field Table 33 \u2013 Rectifier dynamic current field Table 34 \u2013 Output dynamic voltage of the battery terminal <\/td>\n<\/tr>\n | ||||||
45<\/td>\n | Table 35 \u2013 Output dynamic current of the battery terminal Table 36 \u2013 Battery temperature of the SSN Table 37 \u2013 SSN critical state field Table 38 \u2013 Rectifier desired minimum voltage <\/td>\n<\/tr>\n | ||||||
46<\/td>\n | Annex A (informative)Regulation and certification <\/td>\n<\/tr>\n | ||||||
47<\/td>\n | Bibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" Parasitic communication protocol for radio-frequency wireless power transmission<\/b><\/p>\n |