{"id":240017,"date":"2024-10-19T15:42:22","date_gmt":"2024-10-19T15:42:22","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bs-en-62209-12016-tc\/"},"modified":"2024-10-25T10:25:30","modified_gmt":"2024-10-25T10:25:30","slug":"bs-en-62209-12016-tc","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bs-en-62209-12016-tc\/","title":{"rendered":"BS EN 62209-1:2016 – TC"},"content":{"rendered":"

IEC 62209-1:2016 specifies protocols and test procedures for measurement of the peak spatial-average SAR induced inside a simplified model of the head with defined reproducibility. It applies to certain electromagnetic field (EMF) transmitting devices that are positioned next to the ear, where the radiating structures of the device are in close proximity to the human head, such as mobile phones, cordless phones, certain headsets, etc. These protocols and test procedures provide a conservative estimate with limited uncertainty for the peak-spatial SAR that would occur in the head for a significant majority of people during normal use of these devices. The applicable frequency range is from 300 MHz to 6 GHz. This second edition cancels and replaces the first edition published in 2005. This edition constitutes a technical revision.<\/p>\n

PDF Catalog<\/h4>\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
PDF Pages<\/th>\nPDF Title<\/th>\n<\/tr>\n
283<\/td>\nEnglish
CONTENTS <\/td>\n<\/tr>\n
292<\/td>\nFOREWORD <\/td>\n<\/tr>\n
294<\/td>\nINTRODUCTION <\/td>\n<\/tr>\n
295<\/td>\n1 Scope
2 Normative references
3 Terms and definitions <\/td>\n<\/tr>\n
300<\/td>\n4 Symbols and abbreviations
4.1 Physical quantities <\/td>\n<\/tr>\n
301<\/td>\n4.2 Constants
4.3 Abbreviations
5 Measurement system specifications
5.1 General requirements <\/td>\n<\/tr>\n
303<\/td>\n5.2 Phantom specifications (shell and liquid) <\/td>\n<\/tr>\n
304<\/td>\n5.3 Hand and device holder considerations
5.4 Scanning system requirements
5.5 Device holder specifications <\/td>\n<\/tr>\n
305<\/td>\n5.6 Characteristics of the readout electronics
6 Protocol for SAR assessment
6.1 General
6.2 Measurement preparation
6.2.1 Preparation of tissue-equivalent liquid and system check <\/td>\n<\/tr>\n
306<\/td>\n6.2.2 Preparation of the wireless device under test (DUT) <\/td>\n<\/tr>\n
307<\/td>\n6.2.3 Operating modes <\/td>\n<\/tr>\n
308<\/td>\n6.2.4 Positioning of the DUT in relation to the phantom <\/td>\n<\/tr>\n
310<\/td>\nFigures
Figure 1 \u2013 Vertical and horizontal reference lines and reference Points A, B on two example device types: a full touch screen smart phone (top) and a keyboard handset (bottom) <\/td>\n<\/tr>\n
313<\/td>\nFigure 2 \u2013 Cheek position of the wireless device on the left side of SAM where the device shall be maintained for the phantom test set-up.
Figure 3 \u2013 Tilt position of the wireless device on the left side of SAM <\/td>\n<\/tr>\n
314<\/td>\nFigure 4 \u2013 An alternative form factor DUT and standard coordinateand reference points applied <\/td>\n<\/tr>\n
315<\/td>\n6.2.5 Test frequencies for DUT
6.3 Tests to be performed <\/td>\n<\/tr>\n
317<\/td>\n6.4 Measurement procedure
6.4.1 General
Figure 5 \u2013 Block diagram of the tests to be performed <\/td>\n<\/tr>\n
318<\/td>\n6.4.2 General procedure <\/td>\n<\/tr>\n
319<\/td>\nTables
Table 1 \u2013 Area scan parameters
Table 2 \u2013 Zoom scan parameters <\/td>\n<\/tr>\n
320<\/td>\n6.4.3 SAR measurements of handsets with multiple antennas or multiple transmitters
Figure 6 \u2013 Orientation of the probe with respect to the line normal to the phantom surface, shown at two different locations <\/td>\n<\/tr>\n
324<\/td>\nTable 3 \u2013 Example method to determine the combined SAR value using Alternative\u00a01 <\/td>\n<\/tr>\n
326<\/td>\n6.5 Post-processing of SAR measurement data
6.5.1 Interpolation
Figure 7 \u2013 Measurement procedure for different types of correlated signals <\/td>\n<\/tr>\n
327<\/td>\n6.5.2 Extrapolation
6.5.3 Definition of the averaging volume
6.5.4 Searching for the maxima
6.6 Fast SAR testing
6.6.1 General <\/td>\n<\/tr>\n
328<\/td>\n6.6.2 Fast SAR measurement procedure A <\/td>\n<\/tr>\n
330<\/td>\n6.6.3 Fast SAR testing of required frequency bands <\/td>\n<\/tr>\n
331<\/td>\n6.6.4 Fast SAR measurement procedure B <\/td>\n<\/tr>\n
333<\/td>\n6.7 SAR test reduction
6.7.1 General requirements
Figure 8 \u2013 The Fast SAR measurement procedure B. <\/td>\n<\/tr>\n
334<\/td>\n6.7.2 Test reduction for different operating modes in the same frequency band using the same wireless technology <\/td>\n<\/tr>\n
335<\/td>\n6.7.3 Test reduction based on characteristics of DUT design <\/td>\n<\/tr>\n
336<\/td>\n6.7.4 Test reduction based on SAR level analysis <\/td>\n<\/tr>\n
337<\/td>\nTable 4 \u2013 Threshold values TH(f) used in this proposed test reduction protocol <\/td>\n<\/tr>\n
338<\/td>\n6.7.5 Test reduction based on simultaneous multi-band transmission considerations
Figure 9 \u2013 Modified chart of 6.4.2 <\/td>\n<\/tr>\n
339<\/td>\n7 Uncertainty estimation
7.1 General considerations
7.1.1 Concept of uncertainty estimation <\/td>\n<\/tr>\n
340<\/td>\n7.1.2 Type A and Type B evaluation
7.1.3 Degrees of freedom and coverage factor <\/td>\n<\/tr>\n
341<\/td>\n7.2 Components contributing to uncertainty
7.2.1 General
7.2.2 Calibration of the SAR probes <\/td>\n<\/tr>\n
346<\/td>\n7.2.3 Contribution of mechanical constraints <\/td>\n<\/tr>\n
347<\/td>\n7.2.4 Phantom shell <\/td>\n<\/tr>\n
348<\/td>\n7.2.5 Device positioning and holder uncertainties <\/td>\n<\/tr>\n
350<\/td>\n7.2.6 Tissue-equivalent liquid parameter uncertainty <\/td>\n<\/tr>\n
352<\/td>\nTable 5 \u2013 Example uncertainty template and example numerical values for dielectric constant () and conductivity (() measurement <\/td>\n<\/tr>\n
353<\/td>\n7.2.7 Uncertainty in SAR correction for deviations in permittivity and conductivity <\/td>\n<\/tr>\n
354<\/td>\nTable 6 \u2013Uncertainty of Formula (41) as a function of the maximum change in permittivity or conductivity <\/td>\n<\/tr>\n
355<\/td>\n7.2.8 Measured SAR drift <\/td>\n<\/tr>\n
356<\/td>\n7.2.9 RF ambient conditions <\/td>\n<\/tr>\n
357<\/td>\n7.2.10 Contribution of post-processing <\/td>\n<\/tr>\n
358<\/td>\nTable 7 \u2013 Parameters for the reference function f1 in Formula (48) <\/td>\n<\/tr>\n
362<\/td>\n7.2.11 SAR scaling uncertainty
Figure 10 \u2013 Orientation and surface of the averaging volume relative to the phantom surface <\/td>\n<\/tr>\n
363<\/td>\n7.2.12 Deviation of experimental sources
7.2.13 Other uncertainty contributions when using system validation sources
Table 8 \u2013 Uncertainties relating to the deviations of theparameters of the standard waveguide source from theory <\/td>\n<\/tr>\n
364<\/td>\n7.3 Calculation of the uncertainty budget
7.3.1 Combined and expanded uncertainties
7.3.2 Maximum expanded uncertainty
Table 9 \u2013 Other uncertainty contributions relating to the dipole sources described in Annex\u00a0G.
Table 10 \u2013 Other uncertainty contributions relating to the standard waveguide sources described in Annex G <\/td>\n<\/tr>\n
366<\/td>\nTable 11 \u2013 Example of measurement uncertainty evaluation template for handset SAR test <\/td>\n<\/tr>\n
369<\/td>\nTable 12 \u2013 Example of measurement uncertainty evaluation template for system validation <\/td>\n<\/tr>\n
371<\/td>\nTable 13 \u2013 Example of measurement repeatability evaluation template for system check (applicable for one system). <\/td>\n<\/tr>\n
373<\/td>\n7.4 Uncertainty of fast SAR methods based on specific measurement procedures and post-processing techniques
7.4.1 General
7.4.2 Measurement uncertainty evaluation <\/td>\n<\/tr>\n
378<\/td>\nTable 14 \u2013 Measurement uncertainty budget for relative fast SAR tests <\/td>\n<\/tr>\n
380<\/td>\nTable 15 \u2013 Measurement uncertainty budget for system check using fast SAR methods <\/td>\n<\/tr>\n
382<\/td>\n8 Measurement report
8.1 General
8.2 Items to be recorded in the measurement report <\/td>\n<\/tr>\n
385<\/td>\nAnnexes
Annex A (normative) Phantom specifications
A.1 Rationale for the SAM phantom shape
A.2 SAM phantom specifications <\/td>\n<\/tr>\n
386<\/td>\nFigure A.1 \u2013 Illustration of dimensions in Table\u00a0A.1 and Table A.2 <\/td>\n<\/tr>\n
387<\/td>\nTable A.1 \u2013 Dimensions used in deriving SAM phantom from the ARMY 90th percentile male head data (Gordon et al. [56])
Table A.2 \u2013 Additional SAM dimensions compared with selected dimensions from the ARMY 90th-percentile male head data (Gordon et al. [56]) \u2013 specialist head measurement section <\/td>\n<\/tr>\n
388<\/td>\nFigure A.2 \u2013 Close-up side view of phantom showing the ear region
Figure A.3 \u2013 Side view of the phantom showing relevant markings <\/td>\n<\/tr>\n
390<\/td>\nFigure A.4 \u2013 Sagittally bisected phantom with extended perimeter (shown placed on its side as used for device SAR tests)
Figure A.5 \u2013 Picture of the phantom showing the central strip <\/td>\n<\/tr>\n
391<\/td>\nA.3 Flat phantom specifications
Figure A.6 \u2013 Cross-sectional view of SAM at the reference plane <\/td>\n<\/tr>\n
392<\/td>\nA.4 Tissue-equivalent liquids
Figure A.7 \u2013 Dimensions of the elliptical phantom <\/td>\n<\/tr>\n
393<\/td>\nTable A.3 \u2013 Dielectric properties of the head tissue-equivalent liquid <\/td>\n<\/tr>\n
394<\/td>\nAnnex B (normative) Calibration and characterization of dosimetric probes
B.1 Introductory remarks <\/td>\n<\/tr>\n
395<\/td>\nB.2 Linearity
B.3 Assessment of the sensitivity of the dipole sensors
B.3.1 General
B.3.2 Two-step calibration procedures <\/td>\n<\/tr>\n
397<\/td>\nTable B.1 \u2013 Uncertainty analysis for transfer calibration using temperature probes <\/td>\n<\/tr>\n
399<\/td>\nFigure B.1 \u2013 Experimental set-up for assessment of the sensitivity (conversion factor) using a vertically-oriented rectangular waveguide <\/td>\n<\/tr>\n
400<\/td>\nTable B.2 \u2013 Guidelines for designing calibration waveguides <\/td>\n<\/tr>\n
401<\/td>\nB.3.3 One step calibration procedures
Table B.3 \u2013 Uncertainty analysis of the probe calibration in waveguide <\/td>\n<\/tr>\n
402<\/td>\nFigure B.2 \u2013 Illustration of the antenna gain evaluation set-up <\/td>\n<\/tr>\n
403<\/td>\nTable B.4 \u2013 Uncertainty template for evaluation of reference antenna gain <\/td>\n<\/tr>\n
404<\/td>\nTable B.5 \u2013 Uncertainty template for calibration using reference antenna <\/td>\n<\/tr>\n
405<\/td>\nB.3.4 Coaxial calorimeter method <\/td>\n<\/tr>\n
406<\/td>\nFigure B.3 \u2013 Schematic of the coaxial calorimeter system <\/td>\n<\/tr>\n
407<\/td>\nB.4 Isotropy
B.4.1 Axial isotropy
B.4.2 Hemispherical isotropy
Table B.6 \u2013 Uncertainty components for probe calibration using thermal methods <\/td>\n<\/tr>\n
408<\/td>\nFigure B.4 \u2013 Set-up to assess spherical isotropy deviation in tissue-equivalent liquid <\/td>\n<\/tr>\n
409<\/td>\nFigure B.5 \u2013 Alternative set-up to assess spherical isotropy deviation in tissue-equivalent liquid <\/td>\n<\/tr>\n
410<\/td>\nFigure B.6 \u2013 Experimental set-up for the hemispherical isotropy assessment
Figure B.7 \u2013 Conventions for dipole position (\u03be) and polarization (\u03b8 ) <\/td>\n<\/tr>\n
411<\/td>\nFigure B.8 \u2013 Measurement of hemispherical isotropy with reference antenna <\/td>\n<\/tr>\n
412<\/td>\nB.5 Lower detection limit
B.6 Boundary effects
B.7 Response time <\/td>\n<\/tr>\n
413<\/td>\nAnnex C (normative) Post-processing techniques
C.1 Extrapolation and interpolation schemes
C.1.1 Introductory remarks
C.1.2 Interpolation schemes
C.1.3 Extrapolation schemes
C.2 Averaging scheme and maximum finding
C.2.1 Volume average schemes
C.2.2 Extrude method of averaging <\/td>\n<\/tr>\n
414<\/td>\nC.2.3 Maximum peak SAR finding and uncertainty estimation
C.3 Example implementation of parameters for scanning and data evaluation
C.3.1 General
C.3.2 Area scan measurement requirements
C.3.3 Zoom scan
Figure C.1 \u2013 Extrude method of averaging <\/td>\n<\/tr>\n
415<\/td>\nC.3.4 Extrapolation
C.3.5 Interpolation
C.3.6 Integration
Figure C.2 \u2013 Extrapolation of SAR data to the inner surface of the phantom based on a fourth-order least-square polynomial fit of the measured data (squares) <\/td>\n<\/tr>\n
416<\/td>\nAnnex D (normative) SAR measurement system verification
D.1 Overview
D.2 System check
D.2.1 Purpose <\/td>\n<\/tr>\n
417<\/td>\nD.2.2 Phantom set-up
D.2.3 System check source <\/td>\n<\/tr>\n
418<\/td>\nD.2.4 System check source input power measurement
Figure D.1 \u2013 Test set-up for the system check <\/td>\n<\/tr>\n
419<\/td>\nD.2.5 System check procedure <\/td>\n<\/tr>\n
420<\/td>\nD.3 System validation
D.3.1 Purpose
D.3.2 Phantom set-up
D.3.3 System validation sources <\/td>\n<\/tr>\n
421<\/td>\nD.3.4 Reference dipole input power measurement
D.3.5 System validation procedure <\/td>\n<\/tr>\n
422<\/td>\nD.3.6 Numerical target SAR values <\/td>\n<\/tr>\n
423<\/td>\nTable D.1 \u2013 Numerical target SAR values (W\/kg) for standard dipole and flat phantom <\/td>\n<\/tr>\n
424<\/td>\nTable D.2 \u2013 Numerical target SAR values for waveguides specified in Clause G.2 placed in contact with flat phantom [94] <\/td>\n<\/tr>\n
425<\/td>\nD.4 Fast SAR method system validation and system check
D.4.1 General
D.4.2 Fast SAR method system validation <\/td>\n<\/tr>\n
426<\/td>\nD.4.3 Fast SAR method system check <\/td>\n<\/tr>\n
427<\/td>\nAnnex E (normative) Interlaboratory comparisons
E.1 Purpose
E.2 Phantom set-up
E.3 Reference wireless handsets
E.4 Power set-up <\/td>\n<\/tr>\n
428<\/td>\nE.5 Interlaboratory comparison \u2013 Procedure <\/td>\n<\/tr>\n
429<\/td>\nAnnex F (informative) Definition of a phantom coordinate system and a device under test coordinate system
Figure F.1 \u2013 Example reference coordinate system for the left ERP of the SAM phantom <\/td>\n<\/tr>\n
430<\/td>\nFigure F.2 \u2013 Example coordinate system on the device under test <\/td>\n<\/tr>\n
431<\/td>\nAnnex G (informative) SAR system validation sources
G.1 Standard dipole source
Table G.1 \u2013 Mechanical dimensions of the reference dipoles <\/td>\n<\/tr>\n
432<\/td>\nG.2 Standard waveguide source
Figure G.1 \u2013 Mechanical details of the standard dipole <\/td>\n<\/tr>\n
433<\/td>\nFigure G.2 \u2013 Standard waveguide source (dimensions are according to Table G.2)
Table G.2 \u2013 Mechanical dimensions of the standard waveguide <\/td>\n<\/tr>\n
434<\/td>\nAnnex H (informative) Flat phantom <\/td>\n<\/tr>\n
435<\/td>\nFigure H.1 \u2013 Dimensions of the flat phantom set-up used for deriving the minimal phantom dimensions for W and L for a given phantom depth D
Figure H.2 \u2013 FDTD predicted uncertainty in the 10\u00a0g peak spatial-average SAR as a function of the dimensions of the flat phantom compared with an infinite flat phantom, at 800\u00a0MHz <\/td>\n<\/tr>\n
436<\/td>\nTable H.1 \u2013 Parameters used for calculation of reference SAR values in Table D.1 <\/td>\n<\/tr>\n
437<\/td>\nAnnex I (informative) Example recipes for phantom head tissue-equivalent liquids
I.1 Overview
I.2 Ingredients <\/td>\n<\/tr>\n
438<\/td>\nI.3 Tissue-equivalent liquid formulas (permittivity\/conductivity)
Table I.1 \u2013 Suggested recipes for achieving target dielectric parameters: 300\u00a0MHz to 900\u00a0MHz <\/td>\n<\/tr>\n
439<\/td>\nTable I.2 \u2013 Suggested recipes for achieving target dielectric parameters: 1\u00a0450\u00a0MHz to 2\u00a0000\u00a0MHz <\/td>\n<\/tr>\n
440<\/td>\nTable I.3 \u2013 Suggested recipes for achieving target dielectric parameters: 2\u00a0100\u00a0MHz to 5\u00a0800\u00a0MHz <\/td>\n<\/tr>\n
441<\/td>\nAnnex J (informative) Measurement of the dielectric properties of liquidsand uncertainty estimation
J.1 Introductory remarks
J.2 Measurement techniques
J.2.1 General
J.2.2 Instrumentation
J.2.3 General principles <\/td>\n<\/tr>\n
442<\/td>\nJ.3 Slotted coaxial transmission line
J.3.1 General
J.3.2 Equipment set-up
J.3.3 Measurement procedure
Figure J.1 \u2013 Slotted line set-up <\/td>\n<\/tr>\n
443<\/td>\nJ.4 Contact coaxial probe
J.4.1 General
J.4.2 Equipment set-up <\/td>\n<\/tr>\n
444<\/td>\nFigure J.2 \u2013 An open-ended coaxial probe with innerand outer radii a and b, respectively <\/td>\n<\/tr>\n
445<\/td>\nJ.4.3 Measurement procedure
J.5 TEM transmission line
J.5.1 General
J.5.2 Equipment set-up <\/td>\n<\/tr>\n
446<\/td>\nJ.5.3 Measurement procedure
Figure J.3 \u2013 TEM line dielectric test set-up [143] <\/td>\n<\/tr>\n
447<\/td>\nJ.6 Dielectric properties of reference liquids <\/td>\n<\/tr>\n
448<\/td>\nTable J.1 \u2013 Parameters for calculating the dielectric properties of various reference liquids
Table J.2 \u2013 Dielectric properties of reference liquids at 20\u00a0\u00b0C <\/td>\n<\/tr>\n
450<\/td>\nAnnex K (informative) Measurement uncertainty of specific fast SAR methods and fast SAR examples
K.1 General
K.2 Measurement uncertainty evaluation
K.2.1 General <\/td>\n<\/tr>\n
451<\/td>\nK.2.2 Probe calibration and system calibration drift
K.2.3 Isotropy <\/td>\n<\/tr>\n
452<\/td>\nK.2.4 Sensor positioning uncertainty
K.2.5 Sensor location sensitivity <\/td>\n<\/tr>\n
453<\/td>\nK.2.6 Mutual sensor coupling
K.2.7 Sensor coupling with the DUT
K.2.8 Measurement system immunity \/ secondary reception
K.2.9 Deviations in phantom shape <\/td>\n<\/tr>\n
454<\/td>\nK.2.10 Spatial variation in dielectric parameters <\/td>\n<\/tr>\n
455<\/td>\nTable K.1 \u2013 Measurement uncertainty budget for relative fast SAR tests complying with Annex\u00a0K requirements, for tests performed within one frequency band and modulation <\/td>\n<\/tr>\n
457<\/td>\nTable K.2 \u2013 Measurement uncertainty budget for system check using fast SAR methods complying with Annex K requirements <\/td>\n<\/tr>\n
459<\/td>\nK.3 Fast SAR examples
K.3.1 General
Figure K.1 \u2013 SAR values for twelve hypothetical test configurations measured in the same frequency band and modulation (e.g. GSM 900\u00a0MHz) using a hypothetical full SAR (full SAR) and two fast SAR (fast SAR\u00a01 and fast SAR\u00a02) evaluations <\/td>\n<\/tr>\n
460<\/td>\nK.3.2 Example 1: Tests for one frequency band and mode
Table K.3 \u2013 Measurements conducted according to Step a) <\/td>\n<\/tr>\n
461<\/td>\nTable K.4 \u2013 Measurements conducted according to Step b)
Table K.5 \u2013 Measurements conducted according to Step c) <\/td>\n<\/tr>\n
462<\/td>\nTable K.6 \u2013 Measurements conducted according to 6.4.2, Step 2) <\/td>\n<\/tr>\n
463<\/td>\nTable K.7 \u2013 Measurements conducted according to 6.4.2, Step 3)
Table K.8 \u2013 Measurements conducted according to 6.4.2, Step 4) <\/td>\n<\/tr>\n
464<\/td>\nK.3.3 Example 2: Tests over multiple frequency bands and modes
Table K.9 \u2013 Fast SAR measurements conducted according to Step a) <\/td>\n<\/tr>\n
465<\/td>\nTable K.10 \u2013 Fast SAR measurements showing highest SAR value according to Step b)
Table K.11 \u2013 Full SAR measurements conducted according to Step b) <\/td>\n<\/tr>\n
466<\/td>\nTable K.12 \u2013 Fast SAR measurements showing values according-to requirements in Step c)
Table K.13 \u2013 Full SAR measurements conducted according to Step c) <\/td>\n<\/tr>\n
467<\/td>\nK.3.4 Example 3: Tests for one frequency band and mode (Procedure B)
Table K.14 \u2013 Fast SAR measurements showing values accordingto requirements in Step e)
Table K.15 \u2013 Full SAR measurements conducted according to Step e) <\/td>\n<\/tr>\n
468<\/td>\nTable K.16 \u2013 Measurements conducted according to Step a) <\/td>\n<\/tr>\n
469<\/td>\nTable K.17 \u2013 Measurements conducted according to Step b)
Table K.18 \u2013 Measurements conducted according to Step c) <\/td>\n<\/tr>\n
470<\/td>\nTable K.19 \u2013 Measurements conducted according to Step e) <\/td>\n<\/tr>\n
471<\/td>\nK.3.5 Example 4: Tests over multiple frequency bands and modes (Procedure B)
Table K.20 \u2013 Measurements conducted according to Step f) <\/td>\n<\/tr>\n
472<\/td>\nTable K.21 \u2013 Fast SAR measurements conducted according to Step a)
Table K.22 \u2013 Full SAR measurements conducted according to Step b) <\/td>\n<\/tr>\n
473<\/td>\nTable K.23 \u2013 Full SAR measurements conducted according to Step e) <\/td>\n<\/tr>\n
474<\/td>\nTable K.24 \u2013 Full SAR measurements conducted according to Step e) <\/td>\n<\/tr>\n
475<\/td>\nAnnex L (informative) SAR test reduction supporting information
L.1 General
L.2 Test reduction based on characteristics of DUT design
L.2.1 General
L.2.2 Statistical analysis overview <\/td>\n<\/tr>\n
476<\/td>\nL.2.3 Analysis results
Figure L.1 \u2013 Distribution of “Tilt\/Cheek”
Table L.1 \u2013 The number of handsets used for the statistical study <\/td>\n<\/tr>\n
477<\/td>\nTable L.2 \u2013 Statistical analysis results of P(Tilt\/Cheek >\u00a0x) for various x values
Table L.3 \u2013 Statistical analysis results of P(Tilt\/Cheek >\u00a0x)for 1\u00a0g and 10\u00a0g peak spatial-average SAR <\/td>\n<\/tr>\n
478<\/td>\nTable L.4 \u2013 Statistical analysis results of P(Tilt\/Cheek >\u00a0x)for various antenna locations
Table L.5 \u2013 Statistical analysis results of P(Tilt\/Cheek >\u00a0x) for various frequency bands <\/td>\n<\/tr>\n
479<\/td>\nL.2.4 Conclusions
L.2.5 Expansion to multi transmission antennas
L.2.6 Test reduction based on analysis of SAR results on other signal modulations
Table L.6 \u2013 Statistical analysis results of P(Tilt\/Cheek >\u00a0x) for various device types <\/td>\n<\/tr>\n
481<\/td>\nL.3 Test reduction based on SAR level analysis
L.3.1 General
Figure L.2 \u2013 SAR relative to SAR in position with maximum SAR in GSM mode <\/td>\n<\/tr>\n
482<\/td>\nL.3.2 Statistical analysis
Figure L.3 \u2013 Two points identifying the minimum distance between the position of the interpolated maximum SAR and the points at 0,6 ( SARmax <\/td>\n<\/tr>\n
483<\/td>\nFigure L.4 \u2013 Histogram for Dmin in the case of GSM 900 and iso-level at 0,6 \u00d7 SARmax
Table L.7 \u2013 Distance Dmin* for various iso-level values <\/td>\n<\/tr>\n
484<\/td>\nFigure L.5 \u2013 Histogram for random variable Factor1g1800
Table L.8 \u2013 Experimental thresholds to have a 95\u00a0% probability that the maximum measured SAR value from the area scan will also have a peak spatial-average SAR <\/td>\n<\/tr>\n
485<\/td>\nL.3.3 Test reduction applicability example
Table L.9 \u2013 SAR values from the area scan (GSM\u00a0900 band) <\/td>\n<\/tr>\n
486<\/td>\nL.4 Other statistical approaches to search for the high SAR test conditions
L.4.1 General
L.4.2 Test reductions based on a design of experiments (DOE)
Table L.10 \u2013 SAR values from the area scan (GSM\u00a0900 band) <\/td>\n<\/tr>\n
487<\/td>\nL.4.3 Analysis of unstructured data <\/td>\n<\/tr>\n
488<\/td>\nAnnex M (informative) Applying the head SAR test procedures
Table M.1 \u2013 SAR results tables for example test results \u2013 GSM\u00a0850 <\/td>\n<\/tr>\n
489<\/td>\nTable M.2 \u2013 SAR results table for example test results \u2013 GSM\u00a0900
Table M.3 \u2013 SAR results table for example test results \u2013 GSM\u00a01800 <\/td>\n<\/tr>\n
490<\/td>\nTable M.4 \u2013 SAR results table for example test results \u2013 GSM\u00a01900 <\/td>\n<\/tr>\n
491<\/td>\nAnnex N (informative) Studies for potential hand effects on head SAR
N.1 Overview
N.2 Background
N.2.1 General <\/td>\n<\/tr>\n
492<\/td>\nN.2.2 Hand phantoms
N.3 Summary of experimental studies
N.3.1 General
N.3.2 Experimental studies using fully compliant SAR measurement systems
N.3.3 Experimental studies using other SAR measurement systems <\/td>\n<\/tr>\n
493<\/td>\nN.4 Summary of computational studies
N.5 Conclusions <\/td>\n<\/tr>\n
494<\/td>\nAnnex O (informative) Quick start guide <\/td>\n<\/tr>\n
495<\/td>\nFigure O.1 \u2013 Quick guide flow-chart <\/td>\n<\/tr>\n
496<\/td>\nTable O.1 \u2013 Quick start guide: SAR evaluation steps <\/td>\n<\/tr>\n
498<\/td>\nBibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":"

Tracked Changes. Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Devices used next to the ear (Frequency range of 300 MHz to 6 GHz)<\/b><\/p>\n\n\n\n\n
Published By<\/td>\nPublication Date<\/td>\nNumber of Pages<\/td>\n<\/tr>\n
BSI<\/b><\/a><\/td>\n2020<\/td>\n509<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n","protected":false},"featured_media":240019,"template":"","meta":{"rank_math_lock_modified_date":false,"ep_exclude_from_search":false},"product_cat":[285,2641],"product_tag":[],"class_list":{"0":"post-240017","1":"product","2":"type-product","3":"status-publish","4":"has-post-thumbnail","6":"product_cat-17-220-20","7":"product_cat-bsi","9":"first","10":"instock","11":"sold-individually","12":"shipping-taxable","13":"purchasable","14":"product-type-simple"},"_links":{"self":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product\/240017","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product"}],"about":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/types\/product"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media\/240019"}],"wp:attachment":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media?parent=240017"}],"wp:term":[{"taxonomy":"product_cat","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_cat?post=240017"},{"taxonomy":"product_tag","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_tag?post=240017"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}