{"id":160588,"date":"2024-10-19T09:38:50","date_gmt":"2024-10-19T09:38:50","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/aci-209-2r-08-2008\/"},"modified":"2024-10-25T01:57:30","modified_gmt":"2024-10-25T01:57:30","slug":"aci-209-2r-08-2008","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/aci\/aci-209-2r-08-2008\/","title":{"rendered":"ACI 209.2R 08 2008"},"content":{"rendered":"
This guide is intended for the prediction of shrinkage and creep in compression in hardened concrete. It may be assumed that predictions apply to concrete under tension and shear. It outlines the problems and limitations in developing prediction equations for shrinkage and compressive creep of hardened concrete. It also presents and compares the prediction capabilities of four different numerical methods. The models presented are valid for hardened concrete moist cured for at least 1 day and loaded after curing or later. The models are intended for concretes with mean compressive cylindrical strengths at 28 days within a range of at least 20 to 70 Mpa (3000 to 10,000 psi). This document is addressed to designers who wish to predict shrinkage and creep in concrete without testing. For structures that are sensitive to shrinkage and creep, the accuracy of an individual model\u2019s predictions can be improved and their applicable range expanded if the model is calibrated with test data of the actual concrete to be used in the project. Keywords: creep; drying shrinkage; prediction models; statistical indicators.<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
3<\/td>\n | CONTENTS <\/td>\n<\/tr>\n | ||||||
4<\/td>\n | CHAPTER 1\u2014 INTRODUCTION AND SCOPE 1.1\u2014 Background 1.2\u2014Scope 1.3\u2014Basic assumptions for development of prediction models 1.3.1 Shrinkage and creep are additive <\/td>\n<\/tr>\n | ||||||
5<\/td>\n | 1.3.2 Linear aging model for creep 1.3.3 Separation of creep into basic creep and dryingcreep 1.3.4 Differential shrinkage and creep or shrinkage andcreep gradients are neglected 1.3.5 Stresses induced during curing phase are negligible CHAPTER 2\u2014 NOTATION AND DEFINITIONS 2.1\u2014 Notation <\/td>\n<\/tr>\n | ||||||
6<\/td>\n | 2.2\u2014Definitions <\/td>\n<\/tr>\n | ||||||
7<\/td>\n | CHAPTER 3\u2014 PREDICTION MODELS 3.1\u2014 Data used for evaluation of models 3.2\u2014Statistical methods for comparing models <\/td>\n<\/tr>\n | ||||||
8<\/td>\n | 3.3\u2014Criteria for prediction models 3.4\u2014Identification of strains <\/td>\n<\/tr>\n | ||||||
9<\/td>\n | 3.5\u2014Evaluation criteria for creep and shrinkage models CHAPTER 4\u2014 MODEL SELECTION <\/td>\n<\/tr>\n | ||||||
10<\/td>\n | 4.1\u2014ACI 209R-92 model <\/td>\n<\/tr>\n | ||||||
11<\/td>\n | 4.2\u2014Bazant-Baweja B3 model 4.3\u2014CEB MC90-99 model <\/td>\n<\/tr>\n | ||||||
13<\/td>\n | 4.4\u2014GL2000 model 4.5\u2014Statistical comparisons 4.6\u2014Notes about models <\/td>\n<\/tr>\n | ||||||
15<\/td>\n | CHAPTER 5\u2014 REFERENCES 5.1\u2014 Referenced standards and reports 5.2\u2014Cited references <\/td>\n<\/tr>\n | ||||||
18<\/td>\n | APPENDIX A\u2014 MODELS A.1\u2014 ACI 209R- 92 model A.1.1 Shrinkage <\/td>\n<\/tr>\n | ||||||
20<\/td>\n | A.1.2 Compliance <\/td>\n<\/tr>\n | ||||||
22<\/td>\n | A.2\u2014Bazant-Baweja B3 model A.2.1 Shrinkage <\/td>\n<\/tr>\n | ||||||
23<\/td>\n | A.2.2 Compliance <\/td>\n<\/tr>\n | ||||||
24<\/td>\n | A.3\u2014CEB MC90-99 model A.3.1 Shrinkage CEB MC90 <\/td>\n<\/tr>\n | ||||||
25<\/td>\n | A.3.2 Shrinkage CEB MC90-99 <\/td>\n<\/tr>\n | ||||||
26<\/td>\n | A.3.3 Compliance <\/td>\n<\/tr>\n | ||||||
28<\/td>\n | A.4\u2014GL2000 model <\/td>\n<\/tr>\n | ||||||
29<\/td>\n | A.4.1 Relationship between specified and mean compressivestrength of concrete A.4.2 Modulus of elasticity A.4.3 Aggregate stiffness A.4.4 Strength development with time A.4.5 Shrinkage A.4.6 Compliance equations <\/td>\n<\/tr>\n | ||||||
30<\/td>\n | APPENDIX B\u2014 STATISTICAL INDICATORS B.1\u2014BP coefficient of variation B.2\u2014CEB statistical indicators <\/td>\n<\/tr>\n | ||||||
31<\/td>\n | B.2.1 CEB coefficient of variation B.2.2 CEB mean square error B.2.3 CEB mean deviation B.3\u2014The Gardner coefficient of variation ( <\/td>\n<\/tr>\n | ||||||
32<\/td>\n | APPENDIX C\u2014 NUMERIC EXAMPLES C.1\u2014ACI 209R-92 model solution C.1.1 Estimated concrete properties C.1.2 Estimated concrete mixture C.1.3 Shrinkage strains \u03b5sh(t,tc) <\/td>\n<\/tr>\n | ||||||
33<\/td>\n | C.1.4 Compliance J(t,to) <\/td>\n<\/tr>\n | ||||||
35<\/td>\n | C.2\u2014Bazant-Baweja B3 model solution C.2.1 Estimated concrete properties C.2.2 Estimated concrete mixture C.2.3 Shrinkage strains \u03b5sh(t,tc) <\/td>\n<\/tr>\n | ||||||
36<\/td>\n | C.2.4 Compliance J(t,to) = q1 + Co(t,to) + Cd(t,to,tc) <\/td>\n<\/tr>\n | ||||||
38<\/td>\n | C.3\u2014CEB MC90-99 model solution C.3.1 Estimated concrete properties C.3.2 Estimated concrete mixture C.3.3 CEB MC90 shrinkage strains \u03b5sh(t,tc) <\/td>\n<\/tr>\n | ||||||
39<\/td>\n | C.3.4 CEB MC90-99 shrinkage strains \u03b5sh(t,tc) <\/td>\n<\/tr>\n | ||||||
40<\/td>\n | C.3.5 Compliance J(t,to) <\/td>\n<\/tr>\n | ||||||
43<\/td>\n | C.4\u2014GL2000 model solution C.4.1 Estimated concrete properties C.4.2 Estimated concrete mixture C.4.3 Shrinkage strains \u03b5sh(t,tc) <\/td>\n<\/tr>\n | ||||||
44<\/td>\n | C.4.4 Compliance J(t,to) <\/td>\n<\/tr>\n | ||||||
46<\/td>\n | C.5\u2014Graphical comparison of model predictions C.5.1 Shrinkage strains \u03b5sh(t,tc) C.5.2 Compliance J(t,to) <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" 209.2R-08 Guide for Modeling and Calculating Shrinkage and Creep in Hardened Concrete<\/b><\/p>\n |